Nuprl Lemma : tagged-test_wf

[T:Type]. ∀[x:"b":𝔹 |+ "a":ℤ].  (tagged-test(x) ∈ "b":𝔹 |+ "a":ℤ)


Proof




Definitions occuring in Statement :  tagged-test: tagged-test(x) tagged+: |+ z:B bool: 𝔹 uall: [x:A]. B[x] top: Top member: t ∈ T int: token: "$token" universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T tagged-test: tagged-test(x) all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  tagged+: |+ z:B isect2: T1 ⋂ T2 top: Top bfalse: ff rev_uimplies: rev_uimplies(P;Q) eq_atom: =a y assert: b true: True bnot: ¬bb iff: ⇐⇒ Q not: ¬A prop: rev_implies:  Q subtype_rel: A ⊆B
Lemmas referenced :  eq_atom_wf tagged-tag_wf2 tagged+_wf top_wf bool_wf uiff_transitivity equal-wf-T-base assert_wf eqtt_to_assert assert_of_eq_atom mk-tagged_wf_unequal iff_transitivity not_wf equal-wf-base false_wf true_wf iff_weakening_uiff assert_of_bnot bfalse_wf mk-tagged_wf assert_of_eq_int tagged-val_wf2 isect2_subtype_rel2 tag-case_wf bnot_wf eqff_to_assert equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis tokenEquality intEquality hypothesisEquality because_Cache lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed atomEquality independent_functionElimination productElimination independent_isectElimination isect_memberEquality independent_pairFormation natural_numberEquality impliesFunctionality voidElimination voidEquality addEquality applyEquality dependent_functionElimination axiomEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[x:"b":\mBbbB{}  |+  "a":\mBbbZ{}].    (tagged-test(x)  \mmember{}  "b":\mBbbB{}  |+  "a":\mBbbZ{})



Date html generated: 2018_05_21-PM-08_43_07
Last ObjectModification: 2017_07_26-PM-06_07_02

Theory : general


Home Index