Nuprl Lemma : urec-lfp

[f:Type ⟶ Type]. ⋂r:{r:Type| (f r) ⊆r} r ≡ urec(f) supposing continuous'-monotone{i:l}(T.f T)


Proof




Definitions occuring in Statement :  continuous'-monotone: continuous'-monotone{i:l}(T.F[T]) urec: urec(F) ext-eq: A ≡ B uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] set: {x:A| B[x]}  apply: a isect: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a ext-eq: A ≡ B and: P ∧ Q subtype_rel: A ⊆B member: t ∈ T urec: urec(F) tunion: x:A.B[x] pi2: snd(t) nat: implies:  Q false: False ge: i ≥  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] nat_plus: + decidable: Dec(P) or: P ∨ Q continuous'-monotone: continuous'-monotone{i:l}(T.F[T]) type-monotone: Monotone(T.F[T]) type-continuous': semi-continuous(λT.F[T]) guard: {T} rev_uimplies: rev_uimplies(P;Q) rev_subtype_rel: A ⊇B sq_stable: SqStable(P) squash: T
Lemmas referenced :  subtype_urec urec_wf subtype_rel_wf istype-universe nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than subtract-1-ge-0 continuous'-monotone_wf fun_exp0_lemma istype-void fun_exp_unroll_1 decidable__lt intformnot_wf int_formula_prop_not_lemma fun_exp_wf subtract_wf decidable__le itermSubtract_wf int_term_value_subtract_lemma istype-le subtype_rel_functionality_wrt_implies subtype_rel_set subtype_rel_universe1 subtype_rel_weakening ext-eq_inversion ext-eq_weakening sq_stable__subtype_rel subtype_rel_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt independent_pairFormation lambdaEquality_alt isectElimination cut introduction extract_by_obid sqequalHypSubstitution thin hypothesisEquality independent_isectElimination hypothesis dependent_set_memberEquality_alt universeIsType applyEquality equalityTransitivity equalitySymmetry isectIsType setIsType instantiate universeEquality setElimination rename imageElimination productElimination sqequalRule intWeakElimination lambdaFormation_alt natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality dependent_functionElimination Error :memTop,  voidElimination axiomEquality functionIsTypeImplies inhabitedIsType functionIsType unionElimination because_Cache isect_memberEquality_alt voidEquality isectEquality setEquality cumulativity imageMemberEquality baseClosed

Latex:
\mforall{}[f:Type  {}\mrightarrow{}  Type].  \mcap{}r:\{r:Type|  (f  r)  \msubseteq{}r  r\}  .  r  \mequiv{}  urec(f)  supposing  continuous'-monotone\{i:l\}(T.f  T)



Date html generated: 2020_05_20-AM-08_18_22
Last ObjectModification: 2020_02_01-AM-11_13_13

Theory : general


Home Index