Nuprl Lemma : face-lattice-1-join-irreducible

T:Type. ∀eq:EqDecider(T). ∀x,y:Point(face-lattice(T;eq)).
  (x ∨ 1 ∈ Point(face-lattice(T;eq)) ⇐⇒ (x 1 ∈ Point(face-lattice(T;eq))) ∨ (y 1 ∈ Point(face-lattice(T;eq))))


Proof




Definitions occuring in Statement :  face-lattice: face-lattice(T;eq) lattice-1: 1 lattice-join: a ∨ b lattice-point: Point(l) deq: EqDecider(T) all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] face-lattice: face-lattice(T;eq) iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B bdd-distributive-lattice: BoundedDistributiveLattice uimplies: supposing a rev_implies:  Q or: P ∨ Q
Lemmas referenced :  or_wf equal_wf lattice-point_wf free-dist-lattice-with-constraints_wf union-deq_wf face-lattice-constraints_wf subtype_rel_set bounded-lattice-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf lattice-1_wf bdd-distributive-lattice_wf free-dlwc-1-join-irreducible iff_wf face-lattice_wf deq_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut independent_pairFormation hypothesis introduction extract_by_obid isectElimination thin unionEquality cumulativity hypothesisEquality because_Cache sqequalRule lambdaEquality applyEquality instantiate productEquality universeEquality independent_isectElimination setElimination rename addLevel productElimination impliesFunctionality dependent_functionElimination independent_functionElimination

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}x,y:Point(face-lattice(T;eq)).    (x  \mvee{}  y  =  1  \mLeftarrow{}{}\mRightarrow{}  (x  =  1)  \mvee{}  (y  =  1))



Date html generated: 2020_05_20-AM-08_53_26
Last ObjectModification: 2017_07_28-AM-09_16_28

Theory : lattices


Home Index