Nuprl Lemma : free-dma-lift-0
∀T:Type. ∀eq:EqDecider(T). ∀dm:DeMorganAlgebra. ∀eq2:EqDecider(Point(dm)). ∀f:T ⟶ Point(dm).
∀x:Point(free-DeMorgan-algebra(T;eq)).
  (free-dma-lift(T;eq;dm;eq2;f) x) = 0 ∈ Point(dm) supposing x = 0 ∈ Point(free-DeMorgan-algebra(T;eq))
Proof
Definitions occuring in Statement : 
free-dma-lift: free-dma-lift(T;eq;dm;eq2;f)
, 
free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq)
, 
DeMorgan-algebra: DeMorganAlgebra
, 
lattice-0: 0
, 
lattice-point: Point(l)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
dma-hom: dma-hom(dma1;dma2)
, 
bounded-lattice-hom: Hom(l1;l2)
, 
lattice-hom: Hom(l1;l2)
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
DeMorgan-algebra: DeMorganAlgebra
, 
guard: {T}
Lemmas referenced : 
free-dma-lift_wf, 
set_wf, 
dma-hom_wf, 
free-DeMorgan-algebra_wf, 
all_wf, 
equal_wf, 
dminc_wf, 
free-dma-point-subtype, 
lattice-0_wf, 
subtype_rel_set, 
DeMorgan-algebra-structure_wf, 
bounded-lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
DeMorgan-algebra-structure-subtype, 
subtype_rel_transitivity, 
lattice-structure_wf, 
bounded-lattice-axioms_wf, 
uall_wf, 
lattice-point_wf, 
lattice-meet_wf, 
lattice-join_wf, 
DeMorgan-algebra-axioms_wf, 
deq_wf, 
DeMorgan-algebra_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
hypothesis, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
setElimination, 
rename, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
setEquality, 
instantiate, 
productEquality, 
independent_isectElimination, 
universeEquality, 
functionEquality
Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}dm:DeMorganAlgebra.  \mforall{}eq2:EqDecider(Point(dm)).  \mforall{}f:T  {}\mrightarrow{}  Point(dm).
\mforall{}x:Point(free-DeMorgan-algebra(T;eq)).
    (free-dma-lift(T;eq;dm;eq2;f)  x)  =  0  supposing  x  =  0
Date html generated:
2020_05_20-AM-08_57_02
Last ObjectModification:
2017_07_28-AM-09_17_36
Theory : lattices
Home
Index