Nuprl Lemma : free-dma-lift-0

T:Type. ∀eq:EqDecider(T). ∀dm:DeMorganAlgebra. ∀eq2:EqDecider(Point(dm)). ∀f:T ⟶ Point(dm).
x:Point(free-DeMorgan-algebra(T;eq)).
  (free-dma-lift(T;eq;dm;eq2;f) x) 0 ∈ Point(dm) supposing 0 ∈ Point(free-DeMorgan-algebra(T;eq))


Proof




Definitions occuring in Statement :  free-dma-lift: free-dma-lift(T;eq;dm;eq2;f) free-DeMorgan-algebra: free-DeMorgan-algebra(T;eq) DeMorgan-algebra: DeMorganAlgebra lattice-0: 0 lattice-point: Point(l) deq: EqDecider(T) uimplies: supposing a all: x:A. B[x] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] dma-hom: dma-hom(dma1;dma2) bounded-lattice-hom: Hom(l1;l2) lattice-hom: Hom(l1;l2) subtype_rel: A ⊆B so_apply: x[s] prop: implies:  Q and: P ∧ Q DeMorgan-algebra: DeMorganAlgebra guard: {T}
Lemmas referenced :  free-dma-lift_wf set_wf dma-hom_wf free-DeMorgan-algebra_wf all_wf equal_wf dminc_wf free-dma-point-subtype lattice-0_wf subtype_rel_set DeMorgan-algebra-structure_wf bounded-lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-point_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf deq_wf DeMorgan-algebra_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut hypothesis thin introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination cumulativity hypothesisEquality functionExtensionality applyEquality isectElimination because_Cache sqequalRule lambdaEquality setElimination rename productElimination equalityTransitivity equalitySymmetry independent_functionElimination hyp_replacement applyLambdaEquality setEquality instantiate productEquality independent_isectElimination universeEquality functionEquality

Latex:
\mforall{}T:Type.  \mforall{}eq:EqDecider(T).  \mforall{}dm:DeMorganAlgebra.  \mforall{}eq2:EqDecider(Point(dm)).  \mforall{}f:T  {}\mrightarrow{}  Point(dm).
\mforall{}x:Point(free-DeMorgan-algebra(T;eq)).
    (free-dma-lift(T;eq;dm;eq2;f)  x)  =  0  supposing  x  =  0



Date html generated: 2020_05_20-AM-08_57_02
Last ObjectModification: 2017_07_28-AM-09_17_36

Theory : lattices


Home Index