Nuprl Lemma : lattice-fset-meet-is-1
∀[l:BoundedLattice]. ∀[eq:EqDecider(Point(l))]. ∀[s:fset(Point(l))].
  uiff(/\(s) = 1 ∈ Point(l);∀x:Point(l). (x ∈ s 
⇒ (x = 1 ∈ Point(l))))
Proof
Definitions occuring in Statement : 
lattice-fset-meet: /\(s)
, 
bdd-lattice: BoundedLattice
, 
lattice-1: 1
, 
lattice-point: Point(l)
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
deq: EqDecider(T)
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bdd-lattice: BoundedLattice
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
lattice-fset-meet-is-glb, 
fset-member_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
equal_wf, 
lattice-fset-meet_wf, 
decidable-equal-deq, 
lattice-1_wf, 
all_wf, 
fset_wf, 
deq_wf, 
bdd-lattice_wf, 
lattice-le_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
lattice-1-le-iff, 
le-lattice-1
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_pairFormation, 
lambdaFormation, 
applyEquality, 
sqequalRule, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
axiomEquality, 
independent_functionElimination, 
setElimination, 
rename, 
functionEquality, 
independent_pairEquality, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[l:BoundedLattice].  \mforall{}[eq:EqDecider(Point(l))].  \mforall{}[s:fset(Point(l))].
    uiff(/\mbackslash{}(s)  =  1;\mforall{}x:Point(l).  (x  \mmember{}  s  {}\mRightarrow{}  (x  =  1)))
Date html generated:
2020_05_20-AM-08_44_15
Last ObjectModification:
2017_07_28-AM-09_14_06
Theory : lattices
Home
Index