Nuprl Lemma : quotient-dl_wf
∀[l:BoundedDistributiveLattice]. ∀[eq:Point(l) ⟶ Point(l) ⟶ ℙ].
  (l//x,y.eq[x;y] ∈ BoundedDistributiveLattice) supposing 
     ((∀a,c,b,d:Point(l).  (eq[a;c] 
⇒ eq[b;d] 
⇒ eq[a ∨ b;c ∨ d])) and 
     (∀a,c,b,d:Point(l).  (eq[a;c] 
⇒ eq[b;d] 
⇒ eq[a ∧ b;c ∧ d])) and 
     EquivRel(Point(l);x,y.eq[x;y]))
Proof
Definitions occuring in Statement : 
quotient-dl: l//x,y.eq[x; y]
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
lattice-join: a ∨ b
, 
lattice-meet: a ∧ b
, 
lattice-point: Point(l)
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
so_apply: x[s1;s2]
, 
so_lambda: λ2x y.t[x; y]
, 
lattice-meet: a ∧ b
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
quotient: x,y:A//B[x; y]
, 
squash: ↓T
, 
true: True
, 
lattice-join: a ∨ b
, 
quotient-dl: l//x,y.eq[x; y]
, 
lattice-0: 0
, 
lattice-1: 1
, 
guard: {T}
, 
equiv_rel: EquivRel(T;x,y.E[x; y])
, 
refl: Refl(T;x,y.E[x; y])
, 
lattice-axioms: lattice-axioms(l)
, 
sq_stable: SqStable(P)
, 
bounded-lattice-axioms: bounded-lattice-axioms(l)
Lemmas referenced : 
all_wf, 
lattice-point_wf, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
uall_wf, 
equal_wf, 
lattice-meet_wf, 
lattice-join_wf, 
equiv_rel_wf, 
bdd-distributive-lattice_wf, 
quotient-member-eq, 
equal-wf-base, 
member_wf, 
squash_wf, 
true_wf, 
quotient_wf, 
mk-bounded-distributive-lattice_wf, 
lattice-0_wf, 
subtype_quotient, 
lattice-1_wf, 
sq_stable__and, 
sq_stable__uall, 
sq_stable__equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
applyEquality, 
instantiate, 
lambdaEquality, 
productEquality, 
cumulativity, 
universeEquality, 
because_Cache, 
independent_isectElimination, 
functionEquality, 
functionExtensionality, 
isect_memberEquality, 
promote_hyp, 
lambdaFormation, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
pointwiseFunctionality, 
pertypeElimination, 
productElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
setElimination, 
rename, 
independent_pairEquality, 
pointwiseFunctionalityForEquality
Latex:
\mforall{}[l:BoundedDistributiveLattice].  \mforall{}[eq:Point(l)  {}\mrightarrow{}  Point(l)  {}\mrightarrow{}  \mBbbP{}].
    (l//x,y.eq[x;y]  \mmember{}  BoundedDistributiveLattice)  supposing 
          ((\mforall{}a,c,b,d:Point(l).    (eq[a;c]  {}\mRightarrow{}  eq[b;d]  {}\mRightarrow{}  eq[a  \mvee{}  b;c  \mvee{}  d]))  and 
          (\mforall{}a,c,b,d:Point(l).    (eq[a;c]  {}\mRightarrow{}  eq[b;d]  {}\mRightarrow{}  eq[a  \mwedge{}  b;c  \mwedge{}  d]))  and 
          EquivRel(Point(l);x,y.eq[x;y]))
Date html generated:
2020_05_20-AM-08_58_59
Last ObjectModification:
2017_07_28-AM-09_18_07
Theory : lattices
Home
Index