Nuprl Lemma : list_all_iff
∀[T:Type]. ∀l:T List. ∀[P:T ⟶ ℙ]. (list_all(x.P[x];l)
⇐⇒ ∀x:T. ((x ∈ l)
⇒ P[x]))
Proof
Definitions occuring in Statement :
list_all: list_all(x.P[x];l)
,
l_member: (x ∈ l)
,
list: T List
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
iff: P
⇐⇒ Q
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
prop: ℙ
,
so_apply: x[s]
,
implies: P
⇒ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
and: P ∧ Q
,
list_all: list_all(x.P[x];l)
,
top: Top
,
uimplies: b supposing a
,
not: ¬A
,
false: False
,
true: True
,
or: P ∨ Q
,
subtype_rel: A ⊆r B
,
guard: {T}
Lemmas referenced :
list_induction,
uall_wf,
iff_wf,
list_all_wf,
all_wf,
l_member_wf,
list_wf,
reduce_nil_lemma,
null_nil_lemma,
btrue_wf,
member-implies-null-eq-bfalse,
nil_wf,
btrue_neq_bfalse,
true_wf,
reduce_cons_lemma,
cons_member,
and_wf,
equal_wf,
cons_wf,
subtype_rel_self
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
lambdaFormation,
cut,
thin,
instantiate,
introduction,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
cumulativity,
hypothesisEquality,
sqequalRule,
lambdaEquality,
functionEquality,
universeEquality,
applyEquality,
hypothesis,
independent_functionElimination,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
because_Cache,
independent_isectElimination,
equalityTransitivity,
equalitySymmetry,
natural_numberEquality,
functionIsType,
universeIsType,
rename,
productElimination,
unionElimination,
hyp_replacement,
dependent_set_memberEquality,
applyLambdaEquality,
setElimination,
productEquality,
inlFormation,
inrFormation,
inhabitedIsType
Latex:
\mforall{}[T:Type]. \mforall{}l:T List. \mforall{}[P:T {}\mrightarrow{} \mBbbP{}]. (list\_all(x.P[x];l) \mLeftarrow{}{}\mRightarrow{} \mforall{}x:T. ((x \mmember{} l) {}\mRightarrow{} P[x]))
Date html generated:
2019_10_15-AM-10_54_00
Last ObjectModification:
2018_09_27-AM-10_02_43
Theory : list!
Home
Index