Nuprl Lemma : split_tail_rel
∀[A:Type]. ∀[f:A ⟶ 𝔹]. ∀[L:A List]. (((fst(split_tail(L | ∀x.f[x]))) @ (snd(split_tail(L | ∀x.f[x])))) = L ∈ (A List))
Proof
Definitions occuring in Statement :
split_tail: split_tail(L | ∀x.f[x])
,
append: as @ bs
,
list: T List
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
pi1: fst(t)
,
pi2: snd(t)
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
prop: ℙ
,
split_tail: split_tail(L | ∀x.f[x])
,
so_lambda: so_lambda(x,y,z.t[x; y; z])
,
top: Top
,
so_apply: x[s1;s2;s3]
,
pi1: fst(t)
,
pi2: snd(t)
,
append: as @ bs
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
uimplies: b supposing a
,
ifthenelse: if b then t else f fi
,
bfalse: ff
,
exists: ∃x:A. B[x]
,
or: P ∨ Q
,
sq_type: SQType(T)
,
guard: {T}
,
bnot: ¬bb
,
assert: ↑b
,
false: False
,
squash: ↓T
,
true: True
,
subtype_rel: A ⊆r B
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
Lemmas referenced :
list_induction,
equal_wf,
list_wf,
append_wf,
split_tail_wf,
pi1_wf,
pi2_wf,
list_ind_nil_lemma,
list_ind_cons_lemma,
bool_wf,
nil_wf,
eqtt_to_assert,
eqff_to_assert,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
list_ind_wf,
cons_wf,
and_wf,
squash_wf,
true_wf,
subtype_rel_self,
iff_weakening_equal
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation_alt,
introduction,
cut,
thin,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
hypothesisEquality,
sqequalRule,
lambdaEquality,
hypothesis,
applyEquality,
productEquality,
lambdaFormation,
equalityTransitivity,
equalitySymmetry,
dependent_functionElimination,
independent_functionElimination,
because_Cache,
isect_memberEquality,
voidElimination,
voidEquality,
rename,
universeIsType,
axiomEquality,
functionIsType,
functionEquality,
universeEquality,
productElimination,
unionElimination,
equalityElimination,
independent_isectElimination,
dependent_pairFormation,
promote_hyp,
instantiate,
cumulativity,
independent_pairEquality,
dependent_set_memberEquality,
independent_pairFormation,
applyLambdaEquality,
setElimination,
imageElimination,
natural_numberEquality,
imageMemberEquality,
baseClosed
Latex:
\mforall{}[A:Type]. \mforall{}[f:A {}\mrightarrow{} \mBbbB{}]. \mforall{}[L:A List].
(((fst(split\_tail(L | \mforall{}x.f[x]))) @ (snd(split\_tail(L | \mforall{}x.f[x])))) = L)
Date html generated:
2019_10_15-AM-10_54_53
Last ObjectModification:
2018_09_27-AM-10_18_49
Theory : list!
Home
Index