Nuprl Lemma : split_tail_rel
∀[A:Type]. ∀[f:A ⟶ 𝔹]. ∀[L:A List].  (((fst(split_tail(L | ∀x.f[x]))) @ (snd(split_tail(L | ∀x.f[x])))) = L ∈ (A List))
Proof
Definitions occuring in Statement : 
split_tail: split_tail(L | ∀x.f[x]), 
append: as @ bs, 
list: T List, 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
pi1: fst(t), 
pi2: snd(t), 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
prop: ℙ, 
split_tail: split_tail(L | ∀x.f[x]), 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
pi1: fst(t), 
pi2: snd(t), 
append: as @ bs, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
squash: ↓T, 
true: True, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
list_induction, 
equal_wf, 
list_wf, 
append_wf, 
split_tail_wf, 
pi1_wf, 
pi2_wf, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
bool_wf, 
nil_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
list_ind_wf, 
cons_wf, 
and_wf, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
applyEquality, 
productEquality, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
rename, 
universeIsType, 
axiomEquality, 
functionIsType, 
functionEquality, 
universeEquality, 
productElimination, 
unionElimination, 
equalityElimination, 
independent_isectElimination, 
dependent_pairFormation, 
promote_hyp, 
instantiate, 
cumulativity, 
independent_pairEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyLambdaEquality, 
setElimination, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[A:Type].  \mforall{}[f:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[L:A  List].
    (((fst(split\_tail(L  |  \mforall{}x.f[x])))  @  (snd(split\_tail(L  |  \mforall{}x.f[x]))))  =  L)
Date html generated:
2019_10_15-AM-10_54_53
Last ObjectModification:
2018_09_27-AM-10_18_49
Theory : list!
Home
Index