Nuprl Lemma : Jacobi-identity

[r:CRng]. ∀[a,b,c:ℕ3 ⟶ |r|].  (((a (b c)) ((b (c a)) (c (a b)))) 0 ∈ (ℕ3 ⟶ |r|))


Proof




Definitions occuring in Statement :  cross-product: (a b) zero-vector: 0 vector-add: (a b) int_seg: {i..j-} uall: [x:A]. B[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T crng: CRng rng_car: |r|
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q uimplies: supposing a sq_type: SQType(T) implies:  Q guard: {T} zero-vector: 0 cross-product: (a b) vector-add: (a b) select: L[n] cons: [a b] subtract: m lelt: i ≤ j < k and: P ∧ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False crng: CRng rng: Rng true: True squash: T infix_ap: y subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than int_seg_subtype_special int_seg_cases intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma int_seg_wf rng_car_wf crng_wf rng_plus_wf infix_ap_wf rng_times_wf rng_minus_wf rng_zero_wf equal_wf squash_wf true_wf istype-universe rng_times_over_plus rng_times_over_minus subtype_rel_self crng_times_comm crng_times_ac_1 rng_minus_over_plus rng_minus_minus rng_plus_assoc rng_plus_ac_1 rng_plus_comm rng_plus_inv rng_plus_inv_assoc iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt functionExtensionality cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality unionElimination instantiate isectElimination cumulativity intEquality independent_isectElimination because_Cache independent_functionElimination equalityTransitivity equalitySymmetry sqequalRule applyEquality dependent_set_memberEquality_alt independent_pairFormation approximateComputation dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt voidElimination universeIsType productIsType inhabitedIsType lambdaFormation_alt equalityIstype hypothesis_subsumption productElimination int_eqEquality functionIsType imageElimination universeEquality imageMemberEquality baseClosed

Latex:
\mforall{}[r:CRng].  \mforall{}[a,b,c:\mBbbN{}3  {}\mrightarrow{}  |r|].    (((a  x  (b  x  c))  +  ((b  x  (c  x  a))  +  (c  x  (a  x  b))))  =  0)



Date html generated: 2019_10_16-AM-11_28_44
Last ObjectModification: 2018_12_08-PM-00_16_52

Theory : matrices


Home Index