Nuprl Lemma : Jacobi-identity
∀[r:CRng]. ∀[a,b,c:ℕ3 ⟶ |r|].  (((a x (b x c)) + ((b x (c x a)) + (c x (a x b)))) = 0 ∈ (ℕ3 ⟶ |r|))
Proof
Definitions occuring in Statement : 
cross-product: (a x b)
, 
zero-vector: 0
, 
vector-add: (a + b)
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
, 
crng: CRng
, 
rng_car: |r|
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
int_seg: {i..j-}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
zero-vector: 0
, 
cross-product: (a x b)
, 
vector-add: (a + b)
, 
select: L[n]
, 
cons: [a / b]
, 
subtract: n - m
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
crng: CRng
, 
rng: Rng
, 
true: True
, 
squash: ↓T
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
istype-le, 
istype-less_than, 
int_seg_subtype_special, 
int_seg_cases, 
intformand_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
int_seg_wf, 
rng_car_wf, 
crng_wf, 
rng_plus_wf, 
infix_ap_wf, 
rng_times_wf, 
rng_minus_wf, 
rng_zero_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
rng_times_over_plus, 
rng_times_over_minus, 
subtype_rel_self, 
crng_times_comm, 
crng_times_ac_1, 
rng_minus_over_plus, 
rng_minus_minus, 
rng_plus_assoc, 
rng_plus_ac_1, 
rng_plus_comm, 
rng_plus_inv, 
rng_plus_inv_assoc, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
functionExtensionality, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
unionElimination, 
instantiate, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
because_Cache, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
applyEquality, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
productIsType, 
inhabitedIsType, 
lambdaFormation_alt, 
equalityIstype, 
hypothesis_subsumption, 
productElimination, 
int_eqEquality, 
functionIsType, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[r:CRng].  \mforall{}[a,b,c:\mBbbN{}3  {}\mrightarrow{}  |r|].    (((a  x  (b  x  c))  +  ((b  x  (c  x  a))  +  (c  x  (a  x  b))))  =  0)
Date html generated:
2019_10_16-AM-11_28_44
Last ObjectModification:
2018_12_08-PM-00_16_52
Theory : matrices
Home
Index