Nuprl Lemma : rng_lsum_swap
∀[r:Rng]. ∀[A,B:Type]. ∀[F:A ⟶ B ⟶ |r|]. ∀[as:A List]. ∀[bs:B List].
  (Σ{r} a ∈ as. Σ{r} b ∈ bs. F[a;b] = Σ{r} b ∈ bs. Σ{r} a ∈ as. F[a;b] ∈ |r|)
Proof
Definitions occuring in Statement : 
rng_lsum: Σ{r} x ∈ as. f[x]
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
, 
rng_car: |r|
Definitions unfolded in proof : 
infix_ap: x f y
, 
and: P ∧ Q
, 
true: True
, 
prop: ℙ
, 
top: Top
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_apply: x[s]
, 
so_apply: x[s1;s2]
, 
rng: Rng
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
infix_ap_wf, 
rng_plus_zero, 
rng_plus_wf, 
rng_wf, 
cons_wf, 
rng_lsum_cons_lemma, 
rng_zero_wf, 
rng_lsum_nil_lemma, 
nil_wf, 
rng_lsum_wf, 
rng_car_wf, 
equal_wf, 
list_wf, 
uall_wf, 
list_induction, 
squash_wf, 
true_wf, 
rng_lsum_0, 
iff_weakening_equal, 
rng_lsum_plus, 
rng_plus_assoc, 
rng_plus_ac_1, 
rng_plus_comm
Rules used in proof : 
productElimination, 
equalitySymmetry, 
natural_numberEquality, 
levelHypothesis, 
equalityUniverse, 
universeEquality, 
functionEquality, 
axiomEquality, 
lambdaFormation, 
isect_memberEquality, 
dependent_functionElimination, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
functionExtensionality, 
applyEquality, 
because_Cache, 
rename, 
setElimination, 
hypothesis, 
cumulativity, 
lambdaEquality, 
sqequalRule, 
hypothesisEquality, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
thin, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
imageElimination, 
equalityTransitivity, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination
Latex:
\mforall{}[r:Rng].  \mforall{}[A,B:Type].  \mforall{}[F:A  {}\mrightarrow{}  B  {}\mrightarrow{}  |r|].  \mforall{}[as:A  List].  \mforall{}[bs:B  List].
    (\mSigma{}\{r\}  a  \mmember{}  as.  \mSigma{}\{r\}  b  \mmember{}  bs.  F[a;b]  =  \mSigma{}\{r\}  b  \mmember{}  bs.  \mSigma{}\{r\}  a  \mmember{}  as.  F[a;b])
Date html generated:
2018_05_21-PM-09_32_57
Last ObjectModification:
2017_12_14-PM-11_11_59
Theory : matrices
Home
Index