Nuprl Lemma : rng_lsum_swap

[r:Rng]. ∀[A,B:Type]. ∀[F:A ⟶ B ⟶ |r|]. ∀[as:A List]. ∀[bs:B List].
  {r} a ∈ as. Σ{r} b ∈ bs. F[a;b] = Σ{r} b ∈ bs. Σ{r} a ∈ as. F[a;b] ∈ |r|)


Proof




Definitions occuring in Statement :  rng_lsum: Σ{r} x ∈ as. f[x] list: List uall: [x:A]. B[x] so_apply: x[s1;s2] function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng: Rng rng_car: |r|
Definitions unfolded in proof :  infix_ap: y and: P ∧ Q true: True prop: top: Top all: x:A. B[x] implies:  Q so_apply: x[s] so_apply: x[s1;s2] rng: Rng so_lambda: λ2x.t[x] member: t ∈ T uall: [x:A]. B[x] squash: T subtype_rel: A ⊆B uimplies: supposing a guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  infix_ap_wf rng_plus_zero rng_plus_wf rng_wf cons_wf rng_lsum_cons_lemma rng_zero_wf rng_lsum_nil_lemma nil_wf rng_lsum_wf rng_car_wf equal_wf list_wf uall_wf list_induction squash_wf true_wf rng_lsum_0 iff_weakening_equal rng_lsum_plus rng_plus_assoc rng_plus_ac_1 rng_plus_comm
Rules used in proof :  productElimination equalitySymmetry natural_numberEquality levelHypothesis equalityUniverse universeEquality functionEquality axiomEquality lambdaFormation isect_memberEquality dependent_functionElimination voidElimination voidEquality independent_functionElimination functionExtensionality applyEquality because_Cache rename setElimination hypothesis cumulativity lambdaEquality sqequalRule hypothesisEquality isectElimination sqequalHypSubstitution extract_by_obid thin cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution imageElimination equalityTransitivity imageMemberEquality baseClosed independent_isectElimination

Latex:
\mforall{}[r:Rng].  \mforall{}[A,B:Type].  \mforall{}[F:A  {}\mrightarrow{}  B  {}\mrightarrow{}  |r|].  \mforall{}[as:A  List].  \mforall{}[bs:B  List].
    (\mSigma{}\{r\}  a  \mmember{}  as.  \mSigma{}\{r\}  b  \mmember{}  bs.  F[a;b]  =  \mSigma{}\{r\}  b  \mmember{}  bs.  \mSigma{}\{r\}  a  \mmember{}  as.  F[a;b])



Date html generated: 2018_05_21-PM-09_32_57
Last ObjectModification: 2017_12_14-PM-11_11_59

Theory : matrices


Home Index