Nuprl Lemma : A-null-loop

[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].
  ∀lo,hi:ℕn. ∀body:{lo..hi-} ⟶ (A-map Unit).  ((hi ≤ lo)  (A-loop(AType;lo;hi;body) A-null(AType) ∈ (A-map Unit)))


Proof




Definitions occuring in Statement :  A-loop: A-loop(AType;lo;hi;body) A-null: A-null(AType) A-map: A-map array-model: array-model(AType) array: array{i:l}(Val;n) int_seg: {i..j-} nat: uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] implies:  Q unit: Unit apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q A-loop: A-loop(AType;lo;hi;body) prop: int_seg: {i..j-} nat: guard: {T} lelt: i ≤ j < k and: P ∧ Q ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  le_wf int_seg_wf A-map_wf unit_wf2 array_wf nat_wf le_int_wf bool_wf equal-wf-T-base assert_wf A-null_wf lt_int_wf less_than_wf bnot_wf int_seg_properties nat_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf uiff_transitivity eqtt_to_assert assert_of_le_int eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalRule hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality functionEquality applyEquality cumulativity natural_numberEquality lambdaEquality dependent_functionElimination axiomEquality because_Cache isect_memberEquality universeEquality equalityTransitivity equalitySymmetry baseClosed productElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll unionElimination equalityElimination independent_functionElimination

Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].
    \mforall{}lo,hi:\mBbbN{}n.  \mforall{}body:\{lo..hi\msupminus{}\}  {}\mrightarrow{}  (A-map  Unit).
        ((hi  \mleq{}  lo)  {}\mRightarrow{}  (A-loop(AType;lo;hi;body)  =  A-null(AType)))



Date html generated: 2017_10_01-AM-08_44_18
Last ObjectModification: 2017_07_26-PM-04_30_13

Theory : monads


Home Index