Nuprl Lemma : A-null-loop
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].
  ∀lo,hi:ℕn. ∀body:{lo..hi-} ⟶ (A-map Unit).  ((hi ≤ lo) 
⇒ (A-loop(AType;lo;hi;body) = A-null(AType) ∈ (A-map Unit)))
Proof
Definitions occuring in Statement : 
A-loop: A-loop(AType;lo;hi;body)
, 
A-null: A-null(AType)
, 
A-map: A-map
, 
array-model: array-model(AType)
, 
array: array{i:l}(Val;n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
A-loop: A-loop(AType;lo;hi;body)
, 
prop: ℙ
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
Lemmas referenced : 
le_wf, 
int_seg_wf, 
A-map_wf, 
unit_wf2, 
array_wf, 
nat_wf, 
le_int_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
A-null_wf, 
lt_int_wf, 
less_than_wf, 
bnot_wf, 
int_seg_properties, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
functionEquality, 
applyEquality, 
cumulativity, 
natural_numberEquality, 
lambdaEquality, 
dependent_functionElimination, 
axiomEquality, 
because_Cache, 
isect_memberEquality, 
universeEquality, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
unionElimination, 
equalityElimination, 
independent_functionElimination
Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].
    \mforall{}lo,hi:\mBbbN{}n.  \mforall{}body:\{lo..hi\msupminus{}\}  {}\mrightarrow{}  (A-map  Unit).
        ((hi  \mleq{}  lo)  {}\mRightarrow{}  (A-loop(AType;lo;hi;body)  =  A-null(AType)))
Date html generated:
2017_10_01-AM-08_44_18
Last ObjectModification:
2017_07_26-PM-04_30_13
Theory : monads
Home
Index