Nuprl Lemma : fps-set-to-one-zero

[r:CRng]. ∀[y:Atom]. ∀[n:ℕ].  ([0]_n(y:=1) 0 ∈ PowerSeries(r))


Proof




Definitions occuring in Statement :  fps-set-to-one: [f]_n(y:=1) fps-zero: 0 power-series: PowerSeries(X;r) nat: uall: [x:A]. B[x] atom: Atom equal: t ∈ T crng: CRng
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] fps-zero: 0 fps-coeff: f[b] fps-set-to-one: [f]_n(y:=1) subtype_rel: A ⊆B implies:  Q bool: 𝔹 unit: Unit it: btrue: tt nat: bor: p ∨bq ifthenelse: if then else fi  crng: CRng rng: Rng bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  fps-ext fps-set-to-one_wf fps-zero_wf lt_int_wf bag-count_wf atom-deq_wf bool_wf eqtt_to_assert assert_of_lt_int nat_wf rng_zero_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf bag-size_wf bag_wf crng_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality atomEquality hypothesis productElimination independent_isectElimination lambdaFormation sqequalRule natural_numberEquality applyEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry lambdaEquality setElimination rename dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination voidElimination isect_memberEquality axiomEquality

Latex:
\mforall{}[r:CRng].  \mforall{}[y:Atom].  \mforall{}[n:\mBbbN{}].    ([0]\_n(y:=1)  =  0)



Date html generated: 2018_05_21-PM-10_12_58
Last ObjectModification: 2017_07_26-PM-06_35_15

Theory : power!series


Home Index