Nuprl Lemma : expectation-rv-add-cubed
∀[p:FinProbSpace]. ∀[n:ℕ]. ∀[X,Y:RandomVariable(p;n)].
  (E(n;(x.(x * x) * x) o X + Y)
  = ((E(n;(x.(x * x) * x) o X) + (3 * E(n;X * X * Y)) + (3 * E(n;X * Y * Y))) + E(n;(x.(x * x) * x) o Y))
  ∈ ℚ)
Proof
Definitions occuring in Statement : 
rv-compose: (x.F[x]) o X
, 
expectation: E(n;F)
, 
rv-mul: X * Y
, 
rv-add: X + Y
, 
random-variable: RandomVariable(p;n)
, 
finite-prob-space: FinProbSpace
, 
qmul: r * s
, 
qadd: r + s
, 
rationals: ℚ
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
subtype_rel: A ⊆r B
, 
true: True
, 
squash: ↓T
, 
prop: ℙ
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
random-variable: RandomVariable(p;n)
, 
p-outcome: Outcome
, 
rv-compose: (x.F[x]) o X
, 
rv-mul: X * Y
, 
rv-scale: q*X
, 
rv-add: X + Y
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
qadd: r + s
, 
callbyvalueall: callbyvalueall, 
evalall: evalall(t)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
Lemmas referenced : 
random-variable_wf, 
istype-nat, 
finite-prob-space_wf, 
rationals_wf, 
expectation_wf, 
rv-compose_wf, 
rv-add_wf, 
qmul_wf, 
rv-mul_wf, 
int-subtype-rationals, 
rv-scale_wf, 
squash_wf, 
true_wf, 
equal_wf, 
istype-universe, 
qadd_wf, 
expectation-rv-scale, 
subtype_rel_self, 
iff_weakening_equal, 
expectation-rv-add, 
int_seg_wf, 
p-outcome_wf, 
qmul_over_plus_qrng, 
qmul_assoc_qrng, 
qmul_comm_qrng, 
mon_assoc_q, 
qadd_ac_1_q, 
qmul_ac_1_qrng, 
q_distrib, 
qmul_ident
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
hypothesis, 
inhabitedIsType, 
hypothesisEquality, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality_alt, 
isectElimination, 
thin, 
axiomEquality, 
isectIsTypeImplies, 
universeIsType, 
extract_by_obid, 
lambdaEquality_alt, 
natural_numberEquality, 
applyEquality, 
because_Cache, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
functionExtensionality_alt, 
lambdaFormation_alt, 
equalityIstype, 
dependent_functionElimination, 
functionIsType, 
setElimination, 
rename
Latex:
\mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:RandomVariable(p;n)].
    (E(n;(x.(x  *  x)  *  x)  o  X  +  Y)
    =  ((E(n;(x.(x  *  x)  *  x)  o  X)  +  (3  *  E(n;X  *  X  *  Y))  +  (3  *  E(n;X  *  Y  *  Y)))
        +  E(n;(x.(x  *  x)  *  x)  o  Y)))
Date html generated:
2020_05_20-AM-09_31_23
Last ObjectModification:
2019_11_27-PM-05_06_24
Theory : randomness
Home
Index