Nuprl Lemma : expectation-rv-add-cubed

[p:FinProbSpace]. ∀[n:ℕ]. ∀[X,Y:RandomVariable(p;n)].
  (E(n;(x.(x x) x) Y)
  ((E(n;(x.(x x) x) X) (3 E(n;X Y)) (3 E(n;X Y))) E(n;(x.(x x) x) Y))
  ∈ ℚ)


Proof




Definitions occuring in Statement :  rv-compose: (x.F[x]) X expectation: E(n;F) rv-mul: Y rv-add: Y random-variable: RandomVariable(p;n) finite-prob-space: FinProbSpace qmul: s qadd: s rationals: nat: uall: [x:A]. B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B true: True squash: T prop: uimplies: supposing a guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q random-variable: RandomVariable(p;n) p-outcome: Outcome rv-compose: (x.F[x]) X rv-mul: Y rv-scale: q*X rv-add: Y all: x:A. B[x] nat: qadd: s callbyvalueall: callbyvalueall evalall: evalall(t) ifthenelse: if then else fi  btrue: tt
Lemmas referenced :  random-variable_wf istype-nat finite-prob-space_wf rationals_wf expectation_wf rv-compose_wf rv-add_wf qmul_wf rv-mul_wf int-subtype-rationals rv-scale_wf squash_wf true_wf equal_wf istype-universe qadd_wf expectation-rv-scale subtype_rel_self iff_weakening_equal expectation-rv-add int_seg_wf p-outcome_wf qmul_over_plus_qrng qmul_assoc_qrng qmul_comm_qrng mon_assoc_q qadd_ac_1_q qmul_ac_1_qrng q_distrib qmul_ident
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut hypothesis inhabitedIsType hypothesisEquality sqequalRule sqequalHypSubstitution isect_memberEquality_alt isectElimination thin axiomEquality isectIsTypeImplies universeIsType extract_by_obid lambdaEquality_alt natural_numberEquality applyEquality because_Cache imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed instantiate universeEquality independent_isectElimination productElimination independent_functionElimination functionExtensionality_alt lambdaFormation_alt equalityIstype dependent_functionElimination functionIsType setElimination rename

Latex:
\mforall{}[p:FinProbSpace].  \mforall{}[n:\mBbbN{}].  \mforall{}[X,Y:RandomVariable(p;n)].
    (E(n;(x.(x  *  x)  *  x)  o  X  +  Y)
    =  ((E(n;(x.(x  *  x)  *  x)  o  X)  +  (3  *  E(n;X  *  X  *  Y))  +  (3  *  E(n;X  *  Y  *  Y)))
        +  E(n;(x.(x  *  x)  *  x)  o  Y)))



Date html generated: 2020_05_20-AM-09_31_23
Last ObjectModification: 2019_11_27-PM-05_06_24

Theory : randomness


Home Index