Nuprl Lemma : approx-root_wf

k:{2...}. ∀a:{a:ℚ(0 ≤ a) ∨ (↑isOdd(k))} . ∀n:ℕ+.  (k-th root(a) within 1/n ∈ ℚ)


Proof




Definitions occuring in Statement :  approx-root: k-th root(q) within 1/err qle: r ≤ s rationals: isOdd: isOdd(n) int_upper: {i...} nat_plus: + assert: b all: x:A. B[x] or: P ∨ Q member: t ∈ T set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T approx-root: k-th root(q) within 1/err subtype_rel: A ⊆B uall: [x:A]. B[x] so_lambda: λ2x.t[x] prop: and: P ∧ Q nat_plus: + so_apply: x[s] uimplies: supposing a iff: ⇐⇒ Q int_nzero: -o implies:  Q nequal: a ≠ b ∈  not: ¬A false: False rev_implies:  Q guard: {T} int_upper: {i...} satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top sq_exists: x:A [B[x]] or: P ∨ Q
Lemmas referenced :  qroot-ext subtype_rel_self all_wf sq_exists_wf qless_wf qdiv_wf subtype_rel_set rationals_wf less_than_wf int-subtype-rationals int_nzero-rational subtype_rel_sets nequal_wf int_upper_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base or_wf qle_wf assert_wf isOdd_wf nat_plus_wf set_wf int_upper_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut setElimination thin rename sqequalRule applyEquality instantiate extract_by_obid hypothesis introduction sqequalHypSubstitution isectElimination functionEquality because_Cache lambdaEquality productEquality hypothesisEquality intEquality natural_numberEquality independent_isectElimination productElimination setEquality approximateComputation independent_functionElimination dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation baseClosed dependent_set_memberEquality

Latex:
\mforall{}k:\{2...\}.  \mforall{}a:\{a:\mBbbQ{}|  (0  \mleq{}  a)  \mvee{}  (\muparrow{}isOdd(k))\}  .  \mforall{}n:\mBbbN{}\msupplus{}.    (k-th  root(a)  within  1/n  \mmember{}  \mBbbQ{})



Date html generated: 2018_05_22-AM-00_28_55
Last ObjectModification: 2018_05_19-PM-04_08_52

Theory : rationals


Home Index