Nuprl Lemma : qmin-assoc

Assoc(ℚx,y. qmin(x;y))


Proof




Definitions occuring in Statement :  qmin: qmin(x;y) rationals: assoc: Assoc(T;op) lambda: λx.A[x]
Definitions unfolded in proof :  assoc: Assoc(T;op) uall: [x:A]. B[x] member: t ∈ T qmin: qmin(x;y) infix_ap: y all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a prop: guard: {T} iff: ⇐⇒ Q ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False squash: T true: True subtype_rel: A ⊆B not: ¬A
Lemmas referenced :  q_le_wf bool_wf eqtt_to_assert assert-q_le-eq iff_weakening_equal eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot not_wf qle_transitivity_qorder squash_wf true_wf subtype_rel_self rationals_wf qle_complement_qorder qless_transitivity_2_qorder qless_transitivity qless_irreflexivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination independent_functionElimination because_Cache dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity voidElimination applyEquality lambdaEquality imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality isect_memberEquality axiomEquality

Latex:
Assoc(\mBbbQ{};\mlambda{}x,y.  qmin(x;y))



Date html generated: 2019_10_16-PM-00_31_38
Last ObjectModification: 2018_08_22-AM-09_39_34

Theory : rationals


Home Index