Nuprl Lemma : mk_lambdas_unroll_ite
∀[F:Top]. ∀[m:ℕ].  (mk_lambdas(F;m) ~ if (m =z 0) then F else λx.mk_lambdas(F;m - 1) fi )
Proof
Definitions occuring in Statement : 
mk_lambdas: mk_lambdas(F;m), 
nat: ℕ, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
uall: ∀[x:A]. B[x], 
top: Top, 
lambda: λx.A[x], 
subtract: n - m, 
natural_number: $n, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
nat: ℕ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ifthenelse: if b then t else f fi , 
sq_type: SQType(T), 
guard: {T}, 
mk_lambdas: mk_lambdas(F;m), 
top: Top, 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
le: A ≤ B, 
less_than': less_than'(a;b), 
not: ¬A, 
ge: i ≥ j , 
int_upper: {i...}, 
nat_plus: ℕ+, 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
true: True
Lemmas referenced : 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
subtype_base_sq, 
int_subtype_base, 
primrec0_lemma, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
int_upper_subtype_nat, 
false_wf, 
le_wf, 
nat_properties, 
nequal-le-implies, 
zero-add, 
mk_lambdas_unroll, 
decidable__lt, 
not-lt-2, 
add_functionality_wrt_le, 
add-commutes, 
le-add-cancel, 
less_than_wf, 
nat_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
natural_numberEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
instantiate, 
cumulativity, 
intEquality, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_pairFormation, 
promote_hyp, 
hypothesis_subsumption, 
dependent_set_memberEquality, 
independent_pairFormation, 
applyEquality, 
lambdaEquality, 
sqequalAxiom
Latex:
\mforall{}[F:Top].  \mforall{}[m:\mBbbN{}].    (mk\_lambdas(F;m)  \msim{}  if  (m  =\msubz{}  0)  then  F  else  \mlambda{}x.mk\_lambdas(F;m  -  1)  fi  )
Date html generated:
2017_10_01-AM-08_40_09
Last ObjectModification:
2017_07_26-PM-04_27_54
Theory : untyped!computation
Home
Index