Nuprl Lemma : mk_lambdas_unroll_ite

[F:Top]. ∀[m:ℕ].  (mk_lambdas(F;m) if (m =z 0) then else λx.mk_lambdas(F;m 1) fi )


Proof




Definitions occuring in Statement :  mk_lambdas: mk_lambdas(F;m) nat: ifthenelse: if then else fi  eq_int: (i =z j) uall: [x:A]. B[x] top: Top lambda: λx.A[x] subtract: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} mk_lambdas: mk_lambdas(F;m) top: Top bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A ge: i ≥  int_upper: {i...} nat_plus: + decidable: Dec(P) iff: ⇐⇒ Q rev_implies:  Q subtype_rel: A ⊆B true: True
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int subtype_base_sq int_subtype_base primrec0_lemma eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int int_upper_subtype_nat false_wf le_wf nat_properties nequal-le-implies zero-add mk_lambdas_unroll decidable__lt not-lt-2 add_functionality_wrt_le add-commutes le-add-cancel less_than_wf nat_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis natural_numberEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination because_Cache sqequalRule instantiate cumulativity intEquality dependent_functionElimination independent_functionElimination isect_memberEquality voidElimination voidEquality dependent_pairFormation promote_hyp hypothesis_subsumption dependent_set_memberEquality independent_pairFormation applyEquality lambdaEquality sqequalAxiom

Latex:
\mforall{}[F:Top].  \mforall{}[m:\mBbbN{}].    (mk\_lambdas(F;m)  \msim{}  if  (m  =\msubz{}  0)  then  F  else  \mlambda{}x.mk\_lambdas(F;m  -  1)  fi  )



Date html generated: 2017_10_01-AM-08_40_09
Last ObjectModification: 2017_07_26-PM-04_27_54

Theory : untyped!computation


Home Index