Nuprl Lemma : partial_ap_wf

[T:Type]. ∀[n:ℕ]. ∀[m:ℕ1]. ∀[A:ℕn ⟶ Type]. ∀[g:funtype(n;A;T) ⟶ T].  (partial_ap(g;n;m) ∈ funtype(m;A;T) ⟶ T)


Proof




Definitions occuring in Statement :  partial_ap: partial_ap(g;n;m) funtype: funtype(n;A;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] add: m natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T partial_ap: partial_ap(g;n;m) nat: int_seg: {i..j-} guard: {T} ge: i ≥  lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top prop: uiff: uiff(P;Q) le: A ≤ B less_than: a < b subtype_rel: A ⊆B less_than': less_than'(a;b) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  nat_wf subtype_rel_self int_seg_subtype subtype_rel_dep_function ext-eq_weakening subtype_rel_weakening mk_lambdas_wf false_wf int_seg_subtype_nat int_seg_wf lelt_wf decidable__lt add-member-int_seg1 le_wf int_formula_prop_wf int_term_value_add_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermAdd_wf intformless_wf itermVar_wf itermSubtract_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties int_seg_properties subtract_wf funtype_wf mk_lambdas_fun_wf funtype-split
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lambdaEquality applyEquality hypothesisEquality lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_set_memberEquality setElimination rename hypothesis natural_numberEquality addEquality productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll lambdaFormation functionEquality equalityTransitivity equalitySymmetry cumulativity instantiate universeEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[m:\mBbbN{}n  +  1].  \mforall{}[A:\mBbbN{}n  {}\mrightarrow{}  Type].  \mforall{}[g:funtype(n;A;T)  {}\mrightarrow{}  T].
    (partial\_ap(g;n;m)  \mmember{}  funtype(m;A;T)  {}\mrightarrow{}  T)



Date html generated: 2016_05_15-PM-02_10_13
Last ObjectModification: 2016_01_15-PM-10_21_06

Theory : untyped!computation


Home Index