Nuprl Lemma : partial_ap_wf
∀[T:Type]. ∀[n:ℕ]. ∀[m:ℕn + 1]. ∀[A:ℕn ⟶ Type]. ∀[g:funtype(n;A;T) ⟶ T]. (partial_ap(g;n;m) ∈ funtype(m;A;T) ⟶ T)
Proof
Definitions occuring in Statement :
partial_ap: partial_ap(g;n;m)
,
funtype: funtype(n;A;T)
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
add: n + m
,
natural_number: $n
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
partial_ap: partial_ap(g;n;m)
,
nat: ℕ
,
int_seg: {i..j-}
,
guard: {T}
,
ge: i ≥ j
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
prop: ℙ
,
uiff: uiff(P;Q)
,
le: A ≤ B
,
less_than: a < b
,
subtype_rel: A ⊆r B
,
less_than': less_than'(a;b)
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
Lemmas referenced :
nat_wf,
subtype_rel_self,
int_seg_subtype,
subtype_rel_dep_function,
ext-eq_weakening,
subtype_rel_weakening,
mk_lambdas_wf,
false_wf,
int_seg_subtype_nat,
int_seg_wf,
lelt_wf,
decidable__lt,
add-member-int_seg1,
le_wf,
int_formula_prop_wf,
int_term_value_add_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_subtract_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_not_lemma,
int_formula_prop_and_lemma,
itermAdd_wf,
intformless_wf,
itermVar_wf,
itermSubtract_wf,
itermConstant_wf,
intformle_wf,
intformnot_wf,
intformand_wf,
satisfiable-full-omega-tt,
decidable__le,
nat_properties,
int_seg_properties,
subtract_wf,
funtype_wf,
mk_lambdas_fun_wf,
funtype-split
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
lambdaEquality,
applyEquality,
hypothesisEquality,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
because_Cache,
dependent_set_memberEquality,
setElimination,
rename,
hypothesis,
natural_numberEquality,
addEquality,
productElimination,
dependent_functionElimination,
unionElimination,
independent_isectElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
independent_pairFormation,
computeAll,
lambdaFormation,
functionEquality,
equalityTransitivity,
equalitySymmetry,
cumulativity,
instantiate,
universeEquality,
axiomEquality
Latex:
\mforall{}[T:Type]. \mforall{}[n:\mBbbN{}]. \mforall{}[m:\mBbbN{}n + 1]. \mforall{}[A:\mBbbN{}n {}\mrightarrow{} Type]. \mforall{}[g:funtype(n;A;T) {}\mrightarrow{} T].
(partial\_ap(g;n;m) \mmember{} funtype(m;A;T) {}\mrightarrow{} T)
Date html generated:
2016_05_15-PM-02_10_13
Last ObjectModification:
2016_01_15-PM-10_21_06
Theory : untyped!computation
Home
Index