Nuprl Lemma : case-type-comp-false-true
∀[Gamma:j⊢]. ∀[phi,psi:{Gamma ⊢ _:𝔽}].
  (∀[B:{Gamma ⊢ _}]. ∀[cB:Gamma ⊢ Compositon(B)]. ∀[A:{Gamma, phi ⊢ _}]. ∀[cA:Gamma, phi ⊢ Compositon(A)].
     (case-type-comp(Gamma; phi; psi; A; B; cA; cB) = cB ∈ Gamma ⊢ Compositon(B))) supposing 
     (Gamma ⊢ (1(𝔽) 
⇒ psi) and 
     (phi = 0(𝔽) ∈ {Gamma ⊢ _:𝔽}))
Proof
Definitions occuring in Statement : 
case-type-comp: case-type-comp(G; phi; psi; A; B; cA; cB)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
context-subset: Gamma, phi
, 
face-1: 1(𝔽)
, 
face-0: 0(𝔽)
, 
face-type: 𝔽
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
same-cubical-type: Gamma ⊢ A = B
, 
cubical-type: {X ⊢ _}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
true: True
, 
squash: ↓T
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
case-type-comp: case-type-comp(G; phi; psi; A; B; cA; cB)
, 
case-term: (u ∨ v)
, 
composition-structure: Gamma ⊢ Compositon(A)
, 
composition-function: composition-function{j:l,i:l}(Gamma;A)
, 
constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]}
, 
csm-id-adjoin: [u]
, 
csm-id: 1(X)
, 
bdd-distributive-lattice: BoundedDistributiveLattice
, 
cubical-term-at: u(a)
, 
face-forall: (∀ phi)
, 
fl_all: (∀i.phi)
, 
fl-all-hom: fl-all-hom(I;i)
, 
fl-lift: fl-lift(T;eq;L;eqL;f0;f1)
, 
face-lattice-property, 
free-dist-lattice-with-constraints-property, 
lattice-extend-wc: lattice-extend-wc(L;eq;eqL;f;ac)
, 
lattice-extend: lattice-extend(L;eq;eqL;f;ac)
, 
lattice-fset-join: \/(s)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
fset-image: f"(s)
, 
f-union: f-union(domeq;rngeq;s;x.g[x])
, 
list_accum: list_accum, 
csm-ap-term: (t)s
, 
face-0: 0(𝔽)
, 
lattice-0: 0
, 
record-select: r.x
, 
face_lattice: face_lattice(I)
, 
face-lattice: face-lattice(T;eq)
, 
free-dist-lattice-with-constraints: free-dist-lattice-with-constraints(T;eq;x.Cs[x])
, 
constrained-antichain-lattice: constrained-antichain-lattice(T;eq;P)
, 
mk-bounded-distributive-lattice: mk-bounded-distributive-lattice, 
mk-bounded-lattice: mk-bounded-lattice(T;m;j;z;o)
, 
record-update: r[x := v]
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
bfalse: ff
, 
btrue: tt
, 
empty-fset: {}
, 
nil: []
, 
it: ⋅
, 
cubical-type-at: A(a)
, 
pi1: fst(t)
, 
face-type: 𝔽
, 
constant-cubical-type: (X)
, 
I_cube: A(I)
, 
functor-ob: ob(F)
, 
face-presheaf: 𝔽
, 
lattice-point: Point(l)
, 
bool: 𝔹
, 
unit: Unit
, 
uiff: uiff(P;Q)
, 
sq_type: SQType(T)
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
context-subset: Gamma, phi
, 
face-term-implies: Gamma ⊢ (phi 
⇒ psi)
, 
interval-presheaf: 𝕀
, 
names: names(I)
, 
nat: ℕ
, 
face-1: 1(𝔽)
, 
lattice-1: 1
, 
fset-singleton: {x}
, 
cons: [a / b]
Lemmas referenced : 
composition-structure_wf, 
context-subset_wf, 
cubical-type_wf, 
face-term-implies_wf, 
face-1_wf, 
face-0_wf, 
istype-cubical-term, 
face-type_wf, 
cubical_set_wf, 
subset-cubical-type, 
context-subset-is-subset, 
composition-structure-subset, 
empty-context-subset-lemma6, 
subtype_rel_product, 
fset_wf, 
nat_wf, 
I_cube_wf, 
names-hom_wf, 
cube-set-restriction_wf, 
istype-universe, 
top_wf, 
istype-top, 
face-and_wf, 
face-term-implies-subset, 
face-term-and-implies1, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal, 
case-type-comp_wf, 
compatible-composition-disjoint, 
thin-context-subset, 
subtype_rel_wf, 
face-or_wf, 
case-type_wf, 
same-cubical-type_wf, 
face-term-and-implies2, 
sub_cubical_set_self, 
face-1-implies-subset, 
face-0-or, 
case-type-same2, 
subtype-context-subset-0, 
composition-structure-equal, 
cubical-term-equal, 
csm-ap-type_wf, 
cube-context-adjoin_wf, 
interval-type_wf, 
csm-id-adjoin_wf-interval-1, 
constrained-cubical-term_wf, 
csm-id-adjoin_wf-interval-0, 
cubical-type-cumulativity2, 
cubical_set_cumulativity-i-j, 
csm-ap-term_wf, 
thin-context-subset-adjoin, 
csm-context-subset-subtype3, 
cube_set_map_wf, 
lattice-point_wf, 
face_lattice_wf, 
lattice-0_wf, 
equal_wf, 
cubical-term-at_wf, 
face-forall_wf, 
subset-cubical-term2, 
csm-face-type, 
subtype_rel_set, 
bounded-lattice-structure_wf, 
lattice-structure_wf, 
lattice-axioms_wf, 
bounded-lattice-structure-subtype, 
bounded-lattice-axioms_wf, 
lattice-meet_wf, 
lattice-join_wf, 
fl-eq_wf, 
lattice-1_wf, 
eqtt_to_assert, 
assert-fl-eq, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqff_to_assert, 
bool_cases_sqequal, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
face-lattice-0-not-1, 
composition-in-subset, 
csm-id-adjoin_wf, 
interval-1_wf, 
csm-context-subset-subtype2, 
I_cube_pair_redex_lemma, 
csm-face-term-implies, 
csm-face-1, 
add-name_wf, 
new-name_wf, 
cc-adjoin-cube_wf, 
nc-s_wf, 
f-subset-add-name, 
interval-type-at, 
dM_inc_wf, 
trivial-member-add-name1, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
istype-int, 
strong-subtype-self, 
fl_all-1, 
fl_all_wf, 
istype-nat, 
face-lattice-property, 
free-dist-lattice-with-constraints-property
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
universeIsType, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
instantiate, 
equalityIstype, 
because_Cache, 
applyEquality, 
sqequalRule, 
independent_isectElimination, 
setElimination, 
rename, 
functionEquality, 
cumulativity, 
universeEquality, 
lambdaEquality_alt, 
functionIsType, 
Error :memTop, 
lambdaFormation_alt, 
natural_numberEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageElimination, 
inhabitedIsType, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
hyp_replacement, 
functionExtensionality, 
productEquality, 
isectEquality, 
unionElimination, 
equalityElimination, 
dependent_functionElimination, 
dependent_pairFormation_alt, 
promote_hyp, 
voidElimination, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
intEquality
Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[phi,psi:\{Gamma  \mvdash{}  \_:\mBbbF{}\}].
    (\mforall{}[B:\{Gamma  \mvdash{}  \_\}].  \mforall{}[cB:Gamma  \mvdash{}  Compositon(B)].  \mforall{}[A:\{Gamma,  phi  \mvdash{}  \_\}].
      \mforall{}[cA:Gamma,  phi  \mvdash{}  Compositon(A)].
          (case-type-comp(Gamma;  phi;  psi;  A;  B;  cA;  cB)  =  cB))  supposing 
          (Gamma  \mvdash{}  (1(\mBbbF{})  {}\mRightarrow{}  psi)  and 
          (phi  =  0(\mBbbF{})))
Date html generated:
2020_05_20-PM-05_19_00
Last ObjectModification:
2020_04_18-PM-07_59_12
Theory : cubical!type!theory
Home
Index