Nuprl Lemma : rat-cube-third-half
∀k:ℕ. ∀p:ℝ^k. ∀c:ℚCube(k).  (rat-cube-third(k;p;c) 
⇒ (∀h:ℚCube(k). ((↑is-half-cube(k;h;c)) 
⇒ rat-cube-third(k;p;h))))
Proof
Definitions occuring in Statement : 
rat-cube-third: rat-cube-third(k;p;c)
, 
real-vec: ℝ^n
, 
nat: ℕ
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
is-half-cube: is-half-cube(k;h;c)
, 
rational-cube: ℚCube(k)
Definitions unfolded in proof : 
subtype_rel: A ⊆r B
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
rdiv: (x/y)
, 
ifthenelse: if b then t else f fi 
, 
band: p ∧b q
, 
bfalse: ff
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
sq_type: SQType(T)
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
decidable: Dec(P)
, 
not: ¬A
, 
false: False
, 
le: A ≤ B
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
rneq: x ≠ y
, 
guard: {T}
, 
prop: ℙ
, 
nat: ℕ
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
is-half-interval: is-half-interval(I;J)
, 
rat-interval-third: rat-interval-third(p;I)
, 
rational-interval: ℚInterval
, 
real-vec: ℝ^n
, 
rational-cube: ℚCube(k)
, 
in-rat-cube: in-rat-cube(k;p;c)
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
rat-cube-third: rat-cube-third(k;p;c)
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
Lemmas referenced : 
req_inversion, 
true_wf, 
real_wf, 
rneq_wf, 
squash_wf, 
iff_weakening_equal, 
subtype_rel_self, 
qavg-same, 
rleq_weakening, 
rmul-rinv3, 
rdiv_functionality, 
req_functionality, 
rmul_preserves_req, 
or_wf, 
qle_wf, 
real_term_value_minus_lemma, 
int-rinv-cancel, 
rat2real-qavg-2, 
real_term_value_const_lemma, 
real_term_value_var_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_sub_lemma, 
real_polynomial_null, 
req-iff-rsub-is-0, 
rinv-mul-as-rdiv, 
req_weakening, 
rmul_functionality, 
radd_functionality, 
req_transitivity, 
rleq_functionality, 
assert_of_band, 
assert_of_bor, 
iff_weakening_uiff, 
iff_transitivity, 
rationals_wf, 
equal_wf, 
bfalse_wf, 
assert-qeq, 
btrue_wf, 
band_wf, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
bool_cases, 
qeq_wf2, 
bor_wf, 
assert_wf, 
qle_antisymmetry, 
itermMinus_wf, 
rminus_wf, 
radd-preserves-rleq, 
nequal_wf, 
int_formula_prop_wf, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_eq_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
istype-int, 
intformeq_wf, 
intformnot_wf, 
full-omega-unsat, 
decidable__equal_int, 
int_subtype_base, 
subtype_base_sq, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermSubtract_wf, 
rinv_wf2, 
req_wf, 
rmul_wf, 
radd_wf, 
rleq_wf, 
istype-false, 
rleq-int, 
qavg_wf, 
int-to-real_wf, 
rless_wf, 
rless-int, 
rdiv_wf, 
rmul_preserves_rleq2, 
rleq-rat2real, 
rat2real_wf, 
rleq_transitivity, 
istype-nat, 
real-vec_wf, 
rational-cube_wf, 
rat-cube-third_wf, 
is-half-cube_wf, 
istype-assert, 
in-rat-cube_wf, 
int_seg_wf, 
assert-is-half-cube, 
in-rat-half-cube
Rules used in proof : 
universeEquality, 
imageElimination, 
applyLambdaEquality, 
hyp_replacement, 
int_eqEquality, 
promote_hyp, 
inlFormation_alt, 
productEquality, 
unionEquality, 
sqequalBase, 
dependent_set_memberEquality_alt, 
voidElimination, 
isect_memberEquality_alt, 
lambdaEquality_alt, 
dependent_pairFormation_alt, 
approximateComputation, 
unionElimination, 
intEquality, 
cumulativity, 
instantiate, 
productIsType, 
unionIsType, 
closedConclusion, 
baseClosed, 
imageMemberEquality, 
independent_pairFormation, 
inrFormation_alt, 
because_Cache, 
setElimination, 
natural_numberEquality, 
universeIsType, 
equalitySymmetry, 
equalityTransitivity, 
equalityIstype, 
sqequalRule, 
rename, 
inhabitedIsType, 
applyEquality, 
independent_isectElimination, 
productElimination, 
isectElimination, 
hypothesis, 
independent_functionElimination, 
hypothesisEquality, 
thin, 
dependent_functionElimination, 
extract_by_obid, 
introduction, 
cut, 
sqequalHypSubstitution, 
lambdaFormation_alt, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}p:\mBbbR{}\^{}k.  \mforall{}c:\mBbbQ{}Cube(k).
    (rat-cube-third(k;p;c)  {}\mRightarrow{}  (\mforall{}h:\mBbbQ{}Cube(k).  ((\muparrow{}is-half-cube(k;h;c))  {}\mRightarrow{}  rat-cube-third(k;p;h))))
Date html generated:
2019_11_04-PM-04_43_25
Last ObjectModification:
2019_11_04-PM-03_13_09
Theory : real!vectors
Home
Index