Nuprl Lemma : implies-regular

[k:ℕ+]. ∀[x:ℕ+ ⟶ ℤ].
  k-regular-seq(x) supposing ∀n,m:ℕ+.  (|(x within 1/n) (x within 1/m)| ≤ ((r(k)/r(n)) (r(k)/r(m))))


Proof




Definitions occuring in Statement :  rational-approx: (x within 1/n) rdiv: (x/y) rleq: x ≤ y rabs: |x| rsub: y radd: b int-to-real: r(n) regular-int-seq: k-regular-seq(f) nat_plus: + uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  rational-approx: (x within 1/n) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a regular-int-seq: k-regular-seq(f) all: x:A. B[x] le: A ≤ B and: P ∧ Q not: ¬A implies:  Q false: False nat_plus: + subtype_rel: A ⊆B nat: prop: so_lambda: λ2x.t[x] int_nzero: -o nequal: a ≠ b ∈  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top rneq: x ≠ y guard: {T} or: P ∨ Q iff: ⇐⇒ Q rev_implies:  Q decidable: Dec(P) so_apply: x[s] less_than: a < b squash: T less_than': less_than'(a;b) true: True rless: x < y sq_exists: x:{A| B[x]} uiff: uiff(P;Q) real: sq_stable: SqStable(P) rev_uimplies: rev_uimplies(P;Q) sq_type: SQType(T) rdiv: (x/y) itermConstant: "const" req_int_terms: t1 ≡ t2 rleq: x ≤ y rnonneg: rnonneg(x)
Lemmas referenced :  less_than'_wf absval_wf subtract_wf nat_plus_wf nat_wf all_wf rleq_wf rabs_wf rsub_wf int-rdiv_wf nat_plus_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermMultiply_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base nequal_wf int-to-real_wf radd_wf rdiv_wf rless-int decidable__lt intformnot_wf int_formula_prop_not_lemma rless_wf mul_bounds_1b less_than_wf mul_nat_plus equal-wf-T-base req_wf squash_wf true_wf real_wf rabs-int iff_weakening_equal req-int equal_wf absval_pos mul-non-neg1 false_wf sq_stable__less_than decidable__le intformle_wf int_formula_prop_le_lemma le_wf rleq_functionality req_weakening radd-int-fractions rmul_preserves_req rmul_wf rinv_wf2 rneq_functionality rmul-int rneq-int rminus_wf minus-one-mul subtype_base_sq itermAdd_wf int_term_value_add_lemma req_functionality rsub_functionality int-rdiv-req req_transitivity rmul_functionality rinv_functionality2 req_inversion rinv-of-rmul real_term_polynomial itermSubtract_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_add_lemma req-iff-rsub-is-0 radd_functionality rmul-rinv rmul-rinv3 int-rinv-cancel itermMinus_wf real_term_value_minus_lemma rminus_functionality rminus-int radd-int rsub-int rabs_functionality rless_transitivity1 rleq_weakening rmul_preserves_rleq2 rleq_weakening_rless rabs-rdiv rdiv_functionality rleq-int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality because_Cache lambdaEquality productElimination independent_pairEquality extract_by_obid isectElimination multiplyEquality natural_numberEquality setElimination rename addEquality applyEquality functionExtensionality axiomEquality equalityTransitivity equalitySymmetry dependent_set_memberEquality independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll baseApply closedConclusion baseClosed inrFormation independent_functionElimination unionElimination functionEquality imageMemberEquality imageElimination universeEquality minusEquality addLevel instantiate cumulativity promote_hyp

Latex:
\mforall{}[k:\mBbbN{}\msupplus{}].  \mforall{}[x:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].
    k-regular-seq(x) 
    supposing  \mforall{}n,m:\mBbbN{}\msupplus{}.    (|(x  within  1/n)  -  (x  within  1/m)|  \mleq{}  ((r(k)/r(n))  +  (r(k)/r(m))))



Date html generated: 2017_10_03-AM-08_51_24
Last ObjectModification: 2017_07_28-AM-07_34_41

Theory : reals


Home Index