Nuprl Lemma : mon_for_eq_itop
∀g:IMonoid. ∀A:Type. ∀as:A List. ∀f:A ⟶ |g|.  ((For{g} x ∈ as. f[x]) = (Π 0 ≤ i < ||as||. f[as[i]]) ∈ |g|)
Proof
Definitions occuring in Statement : 
mon_for: For{g} x ∈ as. f[x]
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
, 
mon_itop: Π lb ≤ i < ub. E[i]
, 
imon: IMonoid
, 
grp_car: |g|
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
imon: IMonoid
, 
mon_for: For{g} x ∈ as. f[x]
, 
for: For{T,op,id} x ∈ as. f[x]
, 
mon_reduce: mon_reduce, 
squash: ↓T
, 
prop: ℙ
, 
tlambda: λx:T. b[x]
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
less_than: a < b
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
nat: ℕ
Lemmas referenced : 
grp_car_wf, 
list_wf, 
imon_wf, 
equal_wf, 
squash_wf, 
true_wf, 
mon_reduce_eq_itop, 
map_wf, 
mon_itop_wf, 
length_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
iff_weakening_equal, 
map-length, 
length_wf_nat, 
and_wf, 
nat_wf, 
less_than_wf, 
lelt_wf, 
map_length, 
map_select
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
universeEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
functionExtensionality, 
natural_numberEquality, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
productElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
dependent_set_memberEquality, 
addLevel, 
hyp_replacement, 
applyLambdaEquality, 
levelHypothesis
Latex:
\mforall{}g:IMonoid.  \mforall{}A:Type.  \mforall{}as:A  List.  \mforall{}f:A  {}\mrightarrow{}  |g|.
    ((For\{g\}  x  \mmember{}  as.  f[x])  =  (\mPi{}  0  \mleq{}  i  <  ||as||.  f[as[i]]))
Date html generated:
2017_10_01-AM-09_55_12
Last ObjectModification:
2017_03_03-PM-00_50_20
Theory : list_2
Home
Index