Nuprl Lemma : mon_for_eq_itop

g:IMonoid. ∀A:Type. ∀as:A List. ∀f:A ⟶ |g|.  ((For{g} x ∈ as. f[x]) (Π 0 ≤ i < ||as||. f[as[i]]) ∈ |g|)


Proof




Definitions occuring in Statement :  mon_for: For{g} x ∈ as. f[x] select: L[n] length: ||as|| list: List so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T mon_itop: Π lb ≤ i < ub. E[i] imon: IMonoid grp_car: |g|
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] imon: IMonoid mon_for: For{g} x ∈ as. f[x] for: For{T,op,id} x ∈ as. f[x] mon_reduce: mon_reduce squash: T prop: tlambda: λx:T. b[x] so_apply: x[s] so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a guard: {T} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top less_than: a < b true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q nat:
Lemmas referenced :  grp_car_wf list_wf imon_wf equal_wf squash_wf true_wf mon_reduce_eq_itop map_wf mon_itop_wf length_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf iff_weakening_equal map-length length_wf_nat and_wf nat_wf less_than_wf lelt_wf map_length map_select
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis functionEquality cumulativity hypothesisEquality introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename universeEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry dependent_functionElimination functionExtensionality natural_numberEquality sqequalRule because_Cache independent_isectElimination productElimination unionElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageMemberEquality baseClosed independent_functionElimination dependent_set_memberEquality addLevel hyp_replacement applyLambdaEquality levelHypothesis

Latex:
\mforall{}g:IMonoid.  \mforall{}A:Type.  \mforall{}as:A  List.  \mforall{}f:A  {}\mrightarrow{}  |g|.
    ((For\{g\}  x  \mmember{}  as.  f[x])  =  (\mPi{}  0  \mleq{}  i  <  ||as||.  f[as[i]]))



Date html generated: 2017_10_01-AM-09_55_12
Last ObjectModification: 2017_03_03-PM-00_50_20

Theory : list_2


Home Index