Nuprl Lemma : split-maximal-consecutive_wf

[T:Type]. ∀[g:T ─→ ℤ]. ∀[L:T List+].
  (split-maximal-consecutive(g;L) ∈ {p:T List+ × (T List)| ((fst(p)) (snd(p))) ∈ (T List)} )


Proof




Definitions occuring in Statement :  split-maximal-consecutive: split-maximal-consecutive(g;L) listp: List+ append: as bs list: List uall: [x:A]. B[x] pi1: fst(t) pi2: snd(t) member: t ∈ T set: {x:A| B[x]}  function: x:A ─→ B[x] product: x:A × B[x] int: universe: Type equal: t ∈ T
Lemmas :  find-maximal-consecutive_wf int_seg_wf length_wf value-type-has-value set-value-type lelt_wf int-value-type eval_list_sq firstn_wf subtype_rel_list top_wf nth_tl_wf list_wf list-value-type assert_of_lt_int non_neg_length length_firstn_eq subtype_rel_sets le_wf decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul zero-add add-commutes add_functionality_wrt_le add-associates le-add-cancel less-iff-le add-swap le-add-cancel2 length_wf_nat assert_wf lt_int_wf append_firstn_lastn iff_weakening_equal append_wf listp_wf

Latex:
\mforall{}[T:Type].  \mforall{}[g:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[L:T  List\msupplus{}].
    (split-maximal-consecutive(g;L)  \mmember{}  \{p:T  List\msupplus{}  \mtimes{}  (T  List)|  L  =  ((fst(p))  @  (snd(p)))\}  )



Date html generated: 2015_07_23-PM-00_27_57
Last ObjectModification: 2015_02_04-PM-03_09_47

Home Index