Nuprl Lemma : split-maximal-consecutive_wf
∀[T:Type]. ∀[g:T ─→ ℤ]. ∀[L:T List+].
  (split-maximal-consecutive(g;L) ∈ {p:T List+ × (T List)| L = ((fst(p)) @ (snd(p))) ∈ (T List)} )
Proof
Definitions occuring in Statement : 
split-maximal-consecutive: split-maximal-consecutive(g;L)
, 
listp: A List+
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
find-maximal-consecutive_wf, 
int_seg_wf, 
length_wf, 
value-type-has-value, 
set-value-type, 
lelt_wf, 
int-value-type, 
eval_list_sq, 
firstn_wf, 
subtype_rel_list, 
top_wf, 
nth_tl_wf, 
list_wf, 
list-value-type, 
assert_of_lt_int, 
non_neg_length, 
length_firstn_eq, 
subtype_rel_sets, 
le_wf, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
zero-add, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
le-add-cancel, 
less-iff-le, 
add-swap, 
le-add-cancel2, 
length_wf_nat, 
assert_wf, 
lt_int_wf, 
append_firstn_lastn, 
iff_weakening_equal, 
append_wf, 
listp_wf
Latex:
\mforall{}[T:Type].  \mforall{}[g:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[L:T  List\msupplus{}].
    (split-maximal-consecutive(g;L)  \mmember{}  \{p:T  List\msupplus{}  \mtimes{}  (T  List)|  L  =  ((fst(p))  @  (snd(p)))\}  )
Date html generated:
2015_07_23-PM-00_27_57
Last ObjectModification:
2015_02_04-PM-03_09_47
Home
Index