Nuprl Lemma : find-maximal-consecutive_wf
∀[T:Type]. ∀[g:T ─→ ℤ]. ∀[L:T List+].  (find-maximal-consecutive(g;L) ∈ {1..||L|| + 1-})
Proof
Definitions occuring in Statement : 
find-maximal-consecutive: find-maximal-consecutive(g;L)
, 
listp: A List+
, 
length: ||as||
, 
int_seg: {i..j-}
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
Lemmas : 
listp_properties, 
listp_wf, 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
reduce_tl_cons_lemma, 
hd_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
colength_wf_list, 
list_wf, 
list_accum_nil_lemma, 
spread_cons_lemma, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
nat_wf, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-commutes, 
le_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
list_accum_cons_lemma, 
le_weakening, 
decidable__lt, 
lelt_wf, 
value-type-has-value, 
int-value-type, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
subtype_rel-int_seg, 
length_wf, 
add-mul-special, 
zero-mul, 
le-add-cancel2, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int
Latex:
\mforall{}[T:Type].  \mforall{}[g:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[L:T  List\msupplus{}].    (find-maximal-consecutive(g;L)  \mmember{}  \{1..||L||  +  1\msupminus{}\})
Date html generated:
2015_07_23-PM-00_27_51
Last ObjectModification:
2015_01_29-AM-01_31_34
Home
Index