Nuprl Lemma : find-maximal-consecutive_wf

[T:Type]. ∀[g:T ─→ ℤ]. ∀[L:T List+].  (find-maximal-consecutive(g;L) ∈ {1..||L|| 1-})


Proof




Definitions occuring in Statement :  find-maximal-consecutive: find-maximal-consecutive(g;L) listp: List+ length: ||as|| int_seg: {i..j-} uall: [x:A]. B[x] member: t ∈ T function: x:A ─→ B[x] add: m natural_number: $n int: universe: Type
Lemmas :  listp_properties listp_wf list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma reduce_tl_cons_lemma hd_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base colength_wf_list list_wf list_accum_nil_lemma spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel nat_wf decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-commutes le_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base list_accum_cons_lemma le_weakening decidable__lt lelt_wf value-type-has-value int-value-type eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int subtype_rel-int_seg length_wf add-mul-special zero-mul le-add-cancel2 eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_int

Latex:
\mforall{}[T:Type].  \mforall{}[g:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[L:T  List\msupplus{}].    (find-maximal-consecutive(g;L)  \mmember{}  \{1..||L||  +  1\msupminus{}\})



Date html generated: 2015_07_23-PM-00_27_51
Last ObjectModification: 2015_01_29-AM-01_31_34

Home Index