Nuprl Lemma : es-dt-dom

[l:IdLnk]. ∀[da:k:Knd fp-> Type]. ∀[tg:Id].  uiff(↑tg ∈ dom(dt(l;da));↑rcv(l,tg) ∈ dom(da))


Proof




Definitions occuring in Statement :  es-dt: dt(l;da) fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] Kind-deq: KindDeq rcv: rcv(l,tg) Knd: Knd IdLnk: IdLnk id-deq: IdDeq Id: Id assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] universe: Type
Lemmas :  Id_wf fpf_wf Knd_wf IdLnk_wf compose-fpf-dom isrcv_wf bool_wf eqtt_to_assert eq_lnk_wf lnk_wf assert-eq-lnk tagof_wf unit_wf2 eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot it_wf rcv_wf member-fpf-domain es-dt_wf subtype-fpf2 top_wf subtype_top id-deq_wf Kind-deq_wf assert_wf fpf-dom_wf iff_wf l_member_wf fpf-domain_wf bool_cases assert_of_bnot bnot_wf not_wf squash_wf true_wf list_wf iff_transitivity iff_weakening_uiff exists_wf equal-wf-T-base false_wf isl_wf uiff_transitivity and_wf btrue_wf bfalse_wf outl_wf
\mforall{}[l:IdLnk].  \mforall{}[da:k:Knd  fp->  Type].  \mforall{}[tg:Id].    uiff(\muparrow{}tg  \mmember{}  dom(dt(l;da));\muparrow{}rcv(l,tg)  \mmember{}  dom(da))



Date html generated: 2015_07_17-AM-11_17_56
Last ObjectModification: 2015_01_28-AM-07_37_58

Home Index