Nuprl Lemma : iterate-null-process
∀[n:Top]. ∀[inputs:Top List].  (null-process(n)*(inputs) ~ null-process(n))
Proof
Definitions occuring in Statement : 
iterate-process: P*(inputs)
, 
null-process: null-process(n)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
colength_wf_list, 
list-cases, 
list_accum_nil_lemma, 
product_subtype_list, 
spread_cons_lemma, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
nat_wf, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-commutes, 
le_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
list_accum_cons_lemma, 
list_wf, 
top_wf
\mforall{}[n:Top].  \mforall{}[inputs:Top  List].    (null-process(n)*(inputs)  \msim{}  null-process(n))
Date html generated:
2015_07_17-AM-11_20_19
Last ObjectModification:
2015_01_28-AM-07_35_54
Home
Index