Nuprl Lemma : iterate-rec-dataflow

[S,A,B:Type]. ∀[next:S ─→ A ─→ (S × B)]. ∀[L:A List]. ∀[s0:S].
  (rec-dataflow(s0;s,m.next[s;m])*(L) rec-dataflow(rec-dataflow-state(s0;s,m.next[s;m];L);s,m.next[s;m]))


Proof




Definitions occuring in Statement :  iterate-dataflow: P*(inputs) rec-dataflow-state: rec-dataflow-state(s0;s,m.next[s; m];L) rec-dataflow: rec-dataflow(s0;s,m.next[s; m]) list: List uall: [x:A]. B[x] so_apply: x[s1;s2] function: x:A ─→ B[x] product: x:A × B[x] universe: Type sqequal: t
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf equal-wf-T-base colength_wf_list list-cases iter_df_nil_lemma list_accum_nil_lemma product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel nat_wf decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-commutes le_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base iter_df_cons_lemma rec_dataflow_ap_lemma list_accum_cons_lemma list_wf

Latex:
\mforall{}[S,A,B:Type].  \mforall{}[next:S  {}\mrightarrow{}  A  {}\mrightarrow{}  (S  \mtimes{}  B)].  \mforall{}[L:A  List].  \mforall{}[s0:S].
    (rec-dataflow(s0;s,m.next[s;m])*(L)  \msim{}  rec-dataflow(rec-dataflow-state(s0;s,m.next[s;m];L);
                                                                                s,m.next[s;m]))



Date html generated: 2015_07_23-AM-11_05_53
Last ObjectModification: 2015_01_28-PM-11_35_28

Home Index