Nuprl Lemma : rec-dataflow_wf
∀[S,A,B:Type]. ∀[s0:S]. ∀[next:S ─→ A ─→ (S × B)].  (rec-dataflow(s0;s,m.next[s;m]) ∈ dataflow(A;B))
Proof
Definitions occuring in Statement : 
rec-dataflow: rec-dataflow(s0;s,m.next[s; m])
, 
dataflow: dataflow(A;B)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
member: t ∈ T
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
primrec0_lemma, 
decidable__le, 
subtract_wf, 
false_wf, 
not-ge-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
primrec-unroll, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
nat_wf
Latex:
\mforall{}[S,A,B:Type].  \mforall{}[s0:S].  \mforall{}[next:S  {}\mrightarrow{}  A  {}\mrightarrow{}  (S  \mtimes{}  B)].    (rec-dataflow(s0;s,m.next[s;m])  \mmember{}  dataflow(A;B))
Date html generated:
2015_07_23-AM-11_05_26
Last ObjectModification:
2015_01_28-PM-11_35_22
Home
Index