Nuprl Lemma : rec-dataflow_wf

[S,A,B:Type]. ∀[s0:S]. ∀[next:S ─→ A ─→ (S × B)].  (rec-dataflow(s0;s,m.next[s;m]) ∈ dataflow(A;B))


Proof




Definitions occuring in Statement :  rec-dataflow: rec-dataflow(s0;s,m.next[s; m]) dataflow: dataflow(A;B) uall: [x:A]. B[x] so_apply: x[s1;s2] member: t ∈ T function: x:A ─→ B[x] product: x:A × B[x] universe: Type
Lemmas :  nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf primrec0_lemma decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_wf

Latex:
\mforall{}[S,A,B:Type].  \mforall{}[s0:S].  \mforall{}[next:S  {}\mrightarrow{}  A  {}\mrightarrow{}  (S  \mtimes{}  B)].    (rec-dataflow(s0;s,m.next[s;m])  \mmember{}  dataflow(A;B))



Date html generated: 2015_07_23-AM-11_05_26
Last ObjectModification: 2015_01_28-PM-11_35_22

Home Index