Nuprl Lemma : system-strongly-realizes_functionality

[M:Type ─→ Type]
  ∀n2m:ℕ ─→ pMsg(P.M[P]). ∀l2m:Id ─→ pMsg(P.M[P]).
    ∀[A:pEnvType(P.M[P]) ─→ pRunType(P.M[P]) ─→ ℙ]. ∀[B:EO+(pMsg(P.M[P])) ─→ ℙ].
      ∀X,Y:InitialSystem(P.M[P]).
        (system-equiv(P.M[P];X;Y)  assuming(env,r.A[env;r]) |= eo.B[eo]  assuming(env,r.A[env;r]) |= eo.B[eo]) 
  supposing Continuous+(P.M[P])


Proof




Definitions occuring in Statement :  system-strongly-realizes: system-strongly-realizes InitialSystem: InitialSystem(P.M[P]) pEnvType: pEnvType(T.M[T]) pRunType: pRunType(T.M[T]) system-equiv: system-equiv(T.M[T];S1;S2) pMsg: pMsg(P.M[P]) event-ordering+: EO+(Info) Id: Id strong-type-continuous: Continuous+(T.F[T]) nat: uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ─→ B[x] universe: Type
Lemmas :  decidable__exists_int_seg length_wf component_wf equal_wf int_seg_wf decidable__equal_int map_wf decidable_wf exists_wf select_wf zero-le-nat int_seg_subtype-nat false_wf non_neg_length length_wf_nat sq_stable__le upto_wf list_wf ldag_wf pInTransit_wf std-initial_wf set_wf System_wf map-length length_upto and_wf lg-contains_wf select-map subtype_rel_list top_wf less_than_transitivity1 le_weakening lelt_wf subtype_base_sq int_subtype_base select_upto iff_weakening_equal Id_wf process-equiv_wf Process-stream_wf pMsg_wf subtype_rel_dep_function subtype_rel-int_seg subtype_rel_self squash_wf le_wf less_than_wf increasing_inj equal-wf-base-T increasing_wf all_wf system-equiv_wf sub-system_wf pRun_functionality pRunType_wf run-eo_wf runEvents_wf std-initial-property run-initialization_wf run-initialization-property member_wf run-info_wf subtype_rel_wf run-event-step_wf nat_wf

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}n2m:\mBbbN{}  {}\mrightarrow{}  pMsg(P.M[P]).  \mforall{}l2m:Id  {}\mrightarrow{}  pMsg(P.M[P]).
        \mforall{}[A:pEnvType(P.M[P])  {}\mrightarrow{}  pRunType(P.M[P])  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[B:EO+(pMsg(P.M[P]))  {}\mrightarrow{}  \mBbbP{}].
            \mforall{}X,Y:InitialSystem(P.M[P]).
                (system-equiv(P.M[P];X;Y)
                {}\mRightarrow{}  assuming(env,r.A[env;r])
                        X  |=  eo.B[eo]
                {}\mRightarrow{}  assuming(env,r.A[env;r])
                        Y  |=  eo.B[eo]) 
    supposing  Continuous+(P.M[P])



Date html generated: 2015_07_23-AM-11_20_24
Last ObjectModification: 2015_02_04-PM-04_53_35

Home Index