{ [Info:{Info:Type| Info} ]. [B:{B:Type| valueall-type(B)} ].
  [Ps:eclass-program{i:l}(Info) List].
  [F:k:||Ps||  bag(eclass-program-type(Ps[k]))  bag(B)].
    defined-class(simple-comb-program-strict(F;B;Ps))
    = simple-comb(F;k.defined-class(Ps[k])) 
    supposing (f:k:||Ps||  bag(eclass-program-type(Ps[k]))
                 ((k:||Ps||. (null(f k)))  (null(F f))))
     ((F (k.{})) = {}) }

{ Proof }



Definitions occuring in Statement :  simple-comb-program-strict: simple-comb-program-strict(F;B;Ps) defined-class: defined-class(prg) eclass-program-type: eclass-program-type(prg) eclass-program: eclass-program{i:l}(Info) simple-comb: simple-comb(F;Xs) eclass: EClass(A[eo; e]) select: l[i] length: ||as|| null: null(as) assert: b int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] squash: T implies: P  Q and: P  Q set: {x:A| B[x]}  apply: f a lambda: x.A[x] function: x:A  B[x] list: type List natural_number: $n universe: Type equal: s = t empty-bag: {} bag: bag(T) valueall-type: valueall-type(T)
Definitions :  all: x:A. B[x] int_seg: {i..j} natural_number: $n length: ||as|| implies: P  Q l_member: (x  l) union-list2: union-list2(eq;ll) id-deq: IdDeq map: map(f;as) lambda: x.A[x] Id: Id fpf-domain: fpf-domain(f) eclass-program-flows: eclass-program-flows(p) select: l[i] set: {x:A| B[x]}  universe: Type bag: bag(T) function: x:A  B[x] member: t  T isect: x:A. B[x] uall: [x:A]. B[x] list: type List eclass-program: eclass-program{i:l}(Info) valueall-type: valueall-type(T) equal: s = t uimplies: b supposing a prop: squash: T eclass-program-type: eclass-program-type(prg) and: P  Q product: x:A  B[x] assert: b exists: x:A. B[x] eclass: EClass(A[eo; e]) defined-class: defined-class(prg) simple-comb-program-strict: simple-comb-program-strict(F;B;Ps) simple-comb: simple-comb(F;Xs) axiom: Ax apply: f a empty-bag: {} so_lambda: x y.t[x; y] subtype_rel: A r B uiff: uiff(P;Q) less_than: a < b not: A ge: i  j  le: A  B strong-subtype: strong-subtype(A;B) ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] fpf: a:A fp-B[a] pair: <a, b> top: Top int: subtype: S  T rationals: real: null: null(as) limited-type: LimitedType false: False void: Void lelt: i  j < k quotient: x,y:A//B[x; y] fpf-cap: f(x)?z permutation: permutation(T;L1;L2) es-E-interface: E(X) class-program: ClassProgram(T) sq_stable: SqStable(P) classrel: v  X(e) fpf-sub: f  g true: True bool: fpf-join: f  g mk_fpf: mk_fpf(L;f) fpf-single: x : v dataflow-set-class: dataflow-set-class(x.P[x]) spread: spread def event-ordering+: EO+(Info) es-E: E event_ordering: EO cand: A c B nat: record+: record+ dep-isect: Error :dep-isect,  atom: Atom$n eq_atom: eq_atom$n(x;y) eq_atom: x =a y record-select: r.x dataflow-program: DataflowProgram(A) df-program-type: df-program-type(dfp) so_lambda: x.t[x] iff: P  Q rev_implies: P  Q deq: EqDecider(T) combination: Combination(n;T) listp: A List modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) partitions: partitions(I;p) i-member: r  I rleq: x  y rnonneg: rnonneg(r) req: x = y bag-member: bag-member(T;x;bs) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) is_list_splitting: is_list_splitting(T;L;LL;L2;f) value-type: value-type(T) no_repeats: no_repeats(T;l) prime_ideal_p: IsPrimeIdeal(R;P) integ_dom_p: IsIntegDom(r) grp_leq: a  b monoid_hom_p: IsMonHom{M1,M2}(f) group_p: IsGroup(T;op;id;inv) monoid_p: IsMonoid(T;op;id) monot: monot(T;x,y.R[x; y];f) cancel: Cancel(T;S;op) fun_thru_2op: FunThru2op(A;B;opa;opb;f) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) action_p: IsAction(A;x;e;S;f) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) bilinear: BiLinear(T;pl;tm) inverse: Inverse(T;op;id;inv) comm: Comm(T;op) assoc: Assoc(T;op) ident: Ident(T;op;id) coprime: CoPrime(a,b) uconnex: uconnex(T; x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) refl: Refl(T;x,y.E[x; y]) eqfun_p: IsEqFun(T;eq) inject: Inj(A;B;f) inv_funs: InvFuns(A;B;f;g) uni_sat: a = !x:T. Q[x] decidable: Dec(P) path-goes-thru: x-f*-y thru i cut-order: a (X;f) b collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) same-thread: same-thread(es;p;e;e') es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) es-fset-loc: i  locs(s) existse-between3: e(e1,e2].P[e] existse-between2: e[e1,e2].P[e] alle-between2: e[e1,e2].P[e] existse-between1: e[e1,e2).P[e] alle-between1: e[e1,e2).P[e] alle-le: ee'.P[e] alle-lt: e<e'.P[e] existse-le: ee'.P[e] existse-before: e<e'.P[e] es-causle: e c e' es-le: e loc e'  es-locl: (e <loc e') es-causl: (e < e') infix_ap: x f y cs-precondition: state s may consider v in inning i cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-inning-committable: in state s, inning i could commit v  cs-inning-committed: in state s, inning i has committed v cs-passed: by state s, a passed inning i without archiving a value cs-archived: by state s, a archived v in inning i cs-not-completed: in state s, a has not completed inning i l_disjoint: l_disjoint(T;l1;l2) fset-closed: (s closed under fs) f-subset: xs  ys fset-member: a  s p-outcome: Outcome i-closed: i-closed(I) i-finite: i-finite(I) sq_exists: x:{A| B[x]} q-rel: q-rel(r;x) qless: r < s qle: r  s fun-connected: y is f*(x) l_all: (xL.P[x]) l_exists: (xL. P[x]) prime: prime(a) reducible: reducible(a) cmp-le: cmp-le(cmp;x;y) l_contains: A  B or: P  Q union: left + right consensus-rcv: consensus-rcv(V;A) consensus-state3: consensus-state3(T) MaName: MaName Knd: Knd IdLnk: IdLnk fset: FSet{T} dstype: dstype(TypeNames; d; a) nat_plus: unit: Unit rng_car: |r| grp_lt: a < b grp_car: |g| set_lt: a <p b set_leq: a  b set_car: |p| assoced: a ~ b divides: b | a atom: Atom dataflow-history-val: dataflow-history-val(es;e;x.P[x]) fpf_ap_pair: fpf_ap_pair{fpf_ap_pair_compseq_tag_def:o}(x; eq; f; d) fpf-dom: x  dom(f) bnot: b deq-member: deq-member(eq;x;L) es-loc: loc(e) bor: p q band: p  q bimplies: p  q es-ble: e loc e' es-bless: e <loc e' es-eq-E: e = e' eq_lnk: a = b eq_id: a = b name_eq: name_eq(x;y) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) deq-disjoint: deq-disjoint(eq;as;bs) btrue: tt bfalse: ff le_int: i z j lt_int: i <z j last: last(L) data-stream: data-stream(P;L) df-program-meaning: df-program-meaning(dfp) parallel-df-program-case2: parallel-df-program-case2(B;F;dfps) pi1: fst(t) fpf-ap: f(x) null-df-program: null-df-program(B) es-info: info(e) es-le-before: loc(e) AssertBY: Error :AssertBY,  CollapseTHEN: Error :CollapseTHEN,  Auto: Error :Auto,  token: "$token" es-base-E: es-base-E(es) filter: filter(P;l) guard: {T} so_apply: x[s] sq_type: SQType(T) nil: [] cons: [car / cdr] eqof: eqof(d) suptype: suptype(S; T) sqequal: s ~ t b-union: A  B isect2: T1  T2 dataflow: dataflow(A;B) stream: stream(A) tuple-type: tuple-type(L) record: record(x.T[x]) tag-by: zT label: ...$L... t ma-state: State(ds) list_ind: list_ind def pi2: snd(t) q_le: q_le(r;s) q_less: q_less(r;s) qeq: qeq(r;s) eq_type: eq_type(T;T') b-exists: (i<n.P[i])_b bl-exists: (xL.P[x])_b bl-all: (xL.P[x])_b dcdr-to-bool: [d] grp_blt: a < b set_blt: a < b eq_int: (i = j) eq_bool: p =b q eq_knd: a = b in-eclass: e  X ext-eq: A  B tactic: Error :tactic,  D: Error :D,  THENM: Error :THENM,  Unfold: Error :Unfold,  MaAuto: Error :MaAuto,  append: as @ bs es-before: before(e) hd: hd(l) tl: tl(l) CollapseTHENA: Error :CollapseTHENA,  ParallelOp: Error :ParallelOp,  RepUR: Error :RepUR,  intensional-universe: IType eq_term: a == b corec: corec(T.F[T]) primrec: primrec(n;b;c) locl: locl(a) rcv: rcv(l,tg) gt: i > j multiply: n * m iseg: l1  l2 proper-iseg: L1 < L2 es-interface-prior-vals: X(e) RepeatFor: Error :RepeatFor
Lemmas :  bfalse_wf bool_subtype_base es-le-before-not-null null-map data-stream-null-df-program last-map es-le_wf es-le-before_wf2 length-map-sq length-data-stream l_member_length equal-nil-sq-nil pos-length subtype_rel_list last_wf non_null_iff_length data-stream_wf df-program-meaning_wf_null df-program-meaning_wf dataflow_wf null-bag equal-empty-bag intensional-universe_wf sq_stable__equal sq_stable__all sq_stable_wf es-locl_wf es-before_wf3 append_wf es-before_wf length_append length_cons length_nil member_null pos_length2 ext-eq_weakening subtype_rel_weakening uiff_transitivity select-map map_length non_neg_length subtype_rel_function subtype_rel_dep_function subtype_rel_bag length-map le_wf last-stream-parallel-df-program-case2-meaning null-df-program_wf unit_wf member-fpf-dom true_wf fpf-dom_wf false_wf subtype_base_sq ifthenelse_wf pi1_wf_top fpf-ap_wf es-base-E_wf subtype_rel_self es-le-before_wf es-info_wf deq-member_wf bnot_wf not_functionality_wrt_iff assert_of_bnot eqff_to_assert not_wf assert-deq-member eqtt_to_assert iff_weakening_uiff iff_transitivity es-loc_wf bool_wf union-list2_wf select_member decidable__l_member sq_stable_from_decidable member_map map_wf id-deq_wf member-union-list2 df-program-type_wf fpf-trivial-subtype-top fpf_wf dataflow-program_wf eclass-program-flows_wf fpf-domain_wf nat_wf l_member_wf Id_wf event-ordering+_inc es-E_wf event-ordering+_wf sq_stable__subtype_rel int_seg_properties bag-subtype-list permutation_wf length_wf_nat subtype_rel_wf member_wf top_wf empty-bag_wf null_wf3 squash_wf valueall-type_wf assert_wf eclass_wf simple-comb-program-strict_wf defined-class_wf int_seg_wf length_wf1 eclass-program-type_wf bag_wf eclass-program_wf select_wf

\mforall{}[Info:\{Info:Type|  \mdownarrow{}Info\}  ].  \mforall{}[B:\{B:Type|  valueall-type(B)\}  ].  \mforall{}[Ps:eclass-program\{i:l\}(Info)  List].
\mforall{}[F:k:\mBbbN{}||Ps||  {}\mrightarrow{}  bag(eclass-program-type(Ps[k]))  {}\mrightarrow{}  bag(B)].
    defined-class(simple-comb-program-strict(F;B;Ps))  =  simple-comb(F;\mlambda{}k.defined-class(Ps[k])) 
    supposing  (\mforall{}f:k:\mBbbN{}||Ps||  {}\mrightarrow{}  bag(eclass-program-type(Ps[k]))
                              ((\mexists{}k:\mBbbN{}||Ps||.  (\muparrow{}null(f  k)))  {}\mRightarrow{}  (\muparrow{}null(F  f))))
    \mwedge{}  ((F  (\mlambda{}k.\{\}))  =  \{\})


Date html generated: 2011_08_16-PM-06_23_45
Last ObjectModification: 2011_06_13-PM-12_20_39

Home Index