{ [Info,A,B:Type]. [f:A  bag(B)]. [es:EO+(Info)]. [X:EClass(A)]. [e:E].
    ((f[X])(e) ~ filter(e.(bag-size(f X(e)) = 1);(X)(e))) }

{ Proof }



Definitions occuring in Statement :  es-interface-predecessors: (X)(e) es-filter-image: f[X] eclass-val: X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E eq_int: (i = j) uall: [x:A]. B[x] apply: f a lambda: x.A[x] function: x:A  B[x] natural_number: $n universe: Type sqequal: s ~ t filter: filter(P;l) bag-size: bag-size(bs) bag: bag(T)
Definitions :  es-prior-interface: prior(X) es-interface-at: X@i tag-by: zT fset: FSet{T} dataflow: dataflow(A;B) isect2: T1  T2 b-union: A  B intensional-universe: IType cond-class: [X?Y] eq_knd: a = b rev_implies: P  Q iff: P  Q bfalse: ff eq_bool: p =b q lt_int: i <z j le_int: i z j null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q bor: p q bnot: b unit: Unit void: Void deq: EqDecider(T) ma-state: State(ds) class-program: ClassProgram(T) fpf-dom: x  dom(f) false: False fpf-cap: f(x)?z permutation: permutation(T;L1;L2) quotient: x,y:A//B[x; y] atom_eq: atomeqn def rationals: locl: locl(a) Knd: Knd atom: Atom$n squash: T uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) inject: Inj(A;B;f) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) valueall-type: valueall-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P) limited-type: LimitedType so_apply: x[s] union: left + right or: P  Q cons: [car / cdr] exists: x:A. B[x] suptype: suptype(S; T) l_member: (x  l) nil: [] qabs: |r| append: as @ bs pair: <a, b> fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b product: x:A  B[x] and: P  Q uiff: uiff(P;Q) base: Base band: p  q record: record(x.T[x]) so_lambda: x.t[x] list: type List es-le: e loc e'  prop: natural_number: $n true: True guard: {T} implies: P  Q btrue: tt sq_type: SQType(T) bool: es-E-interface: E(X) uimplies: b supposing a real: grp_car: |g| eclass-val: X(e) int: nat: bag-size: bag-size(bs) eq_int: (i = j) decide: case b of inl(x) =s[x] | inr(y) =t[y] es-loc: loc(e) subtype_rel: A r B atom: Atom apply: f a top: Top es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ assert: b record-select: r.x Id: Id set: {x:A| B[x]}  es-filter-image: f[X] in-eclass: e  X es-le-before: loc(e) filter: filter(P;l) eclass-events: eclass-events(es;X;L) es-interface-predecessors: (X)(e) lambda: x.A[x] subtype: S  T all: x:A. B[x] equal: s = t event_ordering: EO es-E: E sqequal: s ~ t universe: Type bag: bag(T) function: x:A  B[x] event-ordering+: EO+(Info) uall: [x:A]. B[x] so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) member: t  T isect: x:A. B[x] divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b cand: A c B l_contains: A  B reducible: reducible(a) prime: prime(a) l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) sq_exists: x:{A| B[x]} i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i es-causl: (e < e') es-locl: (e <loc e') es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') decidable: Dec(P) MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  CollapseTHENA: Error :CollapseTHENA,  rev_uimplies: rev_uimplies(P;Q)
Lemmas :  assert_of_eq_int eq_int_eq_true es-is-filter-image sq_stable_from_decidable decidable__false eclass_wf member_wf in-eclass_wf assert_elim bool_wf bool_subtype_base subtype_base_sq assert_wf event-ordering+_wf event-ordering+_inc subtype_rel_self es-base-E_wf es-E_wf eclass-val_wf nat_wf bag-size_wf eq_int_wf Id_wf es-loc_wf es-interface-top filter-filter es-le-before_wf bag_wf filter_wf list_subtype_base set_subtype_base band_wf filter-sq l_member_wf es-filter-image_wf top_wf property-from-l_member sq_stable_wf sq_stable__equal es-le-before_wf2 es-le_wf es-le-loc uiff_wf assert-eq-id permutation_wf subtype_rel_wf true_wf squash_wf subtype_rel_bag eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf bfalse_wf false_wf ifthenelse_wf iff_wf rev_implies_wf sq_stable__iff sq_stable__assert sq_stable__all assert_witness intensional-universe_wf

\mforall{}[Info,A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  bag(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(A)].  \mforall{}[e:E].
    (\mleq{}(f[X])(e)  \msim{}  filter(\mlambda{}e.(bag-size(f  X(e))  =\msubz{}  1);\mleq{}(X)(e)))


Date html generated: 2011_08_16-PM-05_22_37
Last ObjectModification: 2011_06_20-AM-01_22_00

Home Index