{ [Info:Type]. [es:EO+(Info)]. [T,A:Type]. [num:A  ].
  [val:A  (  T?)]. [size:]. [X:EClass(A)]. [Z:EClass(T)]. [e:E].
    uiff(e  Collect(size v's from X
                        with maximum num= num[v]
                        return <num,n,outl(v).2for which
                        n=outl(val[v]).1 is maximum
                        or <num,-1,prior Zif all isr(val[v])));(e  (Z)')
     (e  X)
     e is first@ loc(e) s.t.  c.||filter(c.(num[X(c)] = num[X(e)]);(X)(c))||
      = size
     e'<e.(e'  X)  (num[X(e')]  num[X(e)])) }

{ Proof }



Definitions occuring in Statement :  es-collect-opt-max: es-collect-opt-max es-prior-val: (X)' es-interface-predecessors: (X)(e) eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-first-at: e is first@ i s.t.  e.P[e] alle-lt: e<e'.P[e] es-loc: loc(e) es-E: E length: ||as|| eq_int: (i = j) assert: b nat_plus: nat: uiff: uiff(P;Q) uall: [x:A]. B[x] so_apply: x[s] le: A  B implies: P  Q and: P  Q unit: Unit lambda: x.A[x] function: x:A  B[x] product: x:A  B[x] union: left + right int: universe: Type equal: s = t filter: filter(P;l)
Definitions :  infix_ap: x f y es-causl: (e < e') btrue: tt atom_eq: atomeqn def sq_type: SQType(T) sqequal: s ~ t append: as @ bs locl: locl(a) atom: Atom$n isl: isl(x) can-apply: can-apply(f;x) intensional-universe: IType es-interface-pair-prior: X;Y Knd: Knd IdLnk: IdLnk list: type List bool: es-local-pred: last(P) exists: x:A. B[x] cand: A c B cond-class: [X?Y] or: P  Q guard: {T} eq_knd: a = b fpf-dom: x  dom(f) int_nzero: real: grp_car: |g| l_member: (x  l) es-E-interface: E(X) limited-type: LimitedType fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) ge: i  j  es-collect-opt-max: es-collect-opt-max es-prior-val: (X)' in-eclass: e  X rev_implies: P  Q iff: P  Q so_lambda: x.t[x] less_than: a < b es-locl: (e <loc e') es-interface-predecessors: (X)(e) eclass-val: X(e) so_apply: x[s] eq_int: (i = j) filter: filter(P;l) length: ||as|| int: axiom: Ax es-loc: loc(e) Id: Id prop: pair: <a, b> le: A  B not: A implies: P  Q alle-lt: e<e'.P[e] es-first-at: e is first@ i s.t.  e.P[e] void: Void false: False true: True decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype: S  T subtype_rel: A r B atom: Atom apply: f a top: Top token: "$token" ifthenelse: if b then t else f fi  record-select: r.x event_ordering: EO es-E: E lambda: x.A[x] set: {x:A| B[x]}  so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) nat_plus: unit: Unit product: x:A  B[x] union: left + right nat: dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t tactic: Error :tactic,  divides: b | a assoced: a ~ b set_leq: a  b set_lt: a <p b grp_lt: a < b l_contains: A  B inject: Inj(A;B;f) reducible: reducible(a) prime: prime(a) squash: T l_exists: (xL. P[x]) l_all: (xL.P[x]) fun-connected: y is f*(x) qle: r  s qless: r < s q-rel: q-rel(r;x) i-finite: i-finite(I) i-closed: i-closed(I) p-outcome: Outcome fset-member: a  s f-subset: xs  ys fset-closed: (s closed under fs) l_disjoint: l_disjoint(T;l1;l2) cs-not-completed: in state s, a has not completed inning i cs-archived: by state s, a archived v in inning i cs-passed: by state s, a passed inning i without archiving a value cs-inning-committed: in state s, inning i has committed v cs-inning-committable: in state s, inning i could commit v  cs-archive-blocked: in state s, ws' blocks ws from archiving v in inning i cs-precondition: state s may consider v in inning i es-le: e loc e'  es-causle: e c e' existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') collect-event: collect-event(es;X;n;v.num[v];L.P[L];e) decidable: Dec(P) bfalse: ff int_eq: if a=b  then c  else d inr: inr x  inl: inl x  mapfilter: mapfilter(f;P;L) band: p  q natural_number: $n minus: -n pi1: fst(t) es-collect-filter-max: es-collect-filter-max map-class: (f[v] where v from X) proper-iseg: L1 < L2 iseg: l1  l2 multiply: n * m gt: i > j map: map(f;as) uni_sat: a = !x:T. Q[x] inv_funs: InvFuns(A;B;f;g) eqfun_p: IsEqFun(T;eq) refl: Refl(T;x,y.E[x; y]) urefl: UniformlyRefl(T;x,y.E[x; y]) sym: Sym(T;x,y.E[x; y]) usym: UniformlySym(T;x,y.E[x; y]) trans: Trans(T;x,y.E[x; y]) utrans: UniformlyTrans(T;x,y.E[x; y]) anti_sym: AntiSym(T;x,y.R[x; y]) uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]) connex: Connex(T;x,y.R[x; y]) uconnex: uconnex(T; x,y.R[x; y]) coprime: CoPrime(a,b) ident: Ident(T;op;id) assoc: Assoc(T;op) comm: Comm(T;op) inverse: Inverse(T;op;id;inv) bilinear: BiLinear(T;pl;tm) bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f) action_p: IsAction(A;x;e;S;f) dist_1op_2op_lr: Dist1op2opLR(A;1op;2op) fun_thru_1op: fun_thru_1op(A;B;opa;opb;f) fun_thru_2op: FunThru2op(A;B;opa;opb;f) cancel: Cancel(T;S;op) monot: monot(T;x,y.R[x; y];f) monoid_p: IsMonoid(T;op;id) group_p: IsGroup(T;op;id;inv) monoid_hom_p: IsMonHom{M1,M2}(f) grp_leq: a  b integ_dom_p: IsIntegDom(r) prime_ideal_p: IsPrimeIdeal(R;P) no_repeats: no_repeats(T;l) value-type: value-type(T) is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g sq_stable: SqStable(P) cons: [car / cdr] nil: [] hd: hd(l) last: last(L) remove-repeats: remove-repeats(eq;L) select: l[i]
Lemmas :  es-interface-predecessors-member eq_int_eq_true l_member-settype l_member_subtype mapfilter-not-nil property-from-l_member sq_stable_wf sq_stable__equal list-set-type2 l_all_wf l_exists_wf squash_wf event_ordering_wf band_tt_simp pos_length2 pos-length equal-nil-sq-nil is-pair-prior es-collect-filter-max_wf iff_functionality_wrt_iff iff_transitivity is-map-class es-interface-pair-prior_wf and_functionality_wrt_uiff3 is-collect-filter-max pi1_wf_top btrue_wf band_wf mapfilter_wf bfalse_wf es-interface-val_wf2 decidable_wf decidable__assert assert_wf es-first-at_wf alle-lt_wf le_wf assert_witness uiff_wf es-locl_wf es-E_wf event-ordering+_inc subtype_rel_self event-ordering+_wf eclass_wf nat_plus_wf unit_wf nat_wf false_wf ifthenelse_wf in-eclass_wf true_wf not_wf Id_wf es-collect-opt-max_wf member_wf subtype_rel_wf es-interface-top es-prior-val_wf top_wf es-loc_wf es-interface-predecessors_wf es-E-interface_wf filter_wf length_wf1 eq_int_wf eclass-val_wf rev_implies_wf iff_wf es-interface-subtype_rel2 intensional-universe_wf length_wf_nat list-subtype l_member_wf filter_type iff_weakening_uiff uiff_inversion assert-eq-id subtype_base_sq bool_wf bool_subtype_base assert_elim nat_plus_properties

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[T,A:Type].  \mforall{}[num:A  {}\mrightarrow{}  \mBbbN{}].  \mforall{}[val:A  {}\mrightarrow{}  (\mBbbN{}  \mtimes{}  T?)].  \mforall{}[size:\mBbbN{}\msupplus{}].
\mforall{}[X:EClass(A)].  \mforall{}[Z:EClass(T)].  \mforall{}[e:E].
    uiff(\muparrow{}e  \mmember{}\msubb{}  Collect(size  v's  from  X
                                            with  maximum  num=  num[v]
                                            return  <num,n,outl(v).2>  for  which
                                            n=outl(val[v]).1  is  maximum
                                            or  <num,-1,prior  Z>  if  all  isr(val[v])));(\muparrow{}e  \mmember{}\msubb{}  (Z)')
    \mwedge{}  (\muparrow{}e  \mmember{}\msubb{}  X)
    \mwedge{}  e  is  first@  loc(e)  s.t.    c.||filter(\mlambda{}c.(num[X(c)]  =\msubz{}  num[X(e)]);\mleq{}(X)(c))||  =  size
    \mwedge{}  \mforall{}e'<e.(\muparrow{}e'  \mmember{}\msubb{}  X)  {}\mRightarrow{}  (num[X(e')]  \mleq{}  num[X(e)]))


Date html generated: 2011_08_16-PM-05_40_11
Last ObjectModification: 2011_06_20-AM-01_29_49

Home Index