Nuprl Lemma : hdf-bind-gen-left-halt

[A,B,C:Type]. ∀[Y:B ─→ hdataflow(A;C)]. ∀[hdfs:bag(hdataflow(A;C))].
  hdf-halt() (hdfs) >>hdf-halt() (hdfs) >>= λx.hdf-return({x}) ∈ hdataflow(A;C) supposing valueall-type(C)


Proof




Definitions occuring in Statement :  hdf-bind-gen: (hdfs) >>Y hdf-return: hdf-return(x) hdf-halt: hdf-halt() hdataflow: hdataflow(A;B) valueall-type: valueall-type(T) uimplies: supposing a uall: [x:A]. B[x] lambda: λx.A[x] function: x:A ─→ B[x] universe: Type equal: t ∈ T single-bag: {x} bag: bag(T)
Lemmas :  list_induction all_wf hdataflow_wf bag_wf equal_wf bool_wf hdf-halted_wf iterate-hdataflow_wf hdf-bind-gen_wf hdf-halt_wf hdf-return_wf single-bag_wf list_wf iter_hdf_nil_lemma iter_hdf_cons_lemma hdf_halted_halt_red_lemma hdf_ap_halt_lemma bag_map_empty_lemma bag-null_wf eqtt_to_assert assert-bag-null btrue_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot equal-wf-T-base hdf_halted_run_red_lemma bfalse_wf bag-filter_wf bnot_wf bag-map_wf hdf-ap_wf bag-append_wf empty-bag_wf subtype_rel_bag assert_wf hdf-bind-gen-ap and_wf squash_wf true_wf hdf-out_wf hdf_out_halt_red_lemma valueall-type-has-valueall bag-valueall-type product-valueall-type hdataflow-valueall-type bag-combine_wf hdf-out-run evalall-reduce
\mforall{}[A,B,C:Type].  \mforall{}[Y:B  {}\mrightarrow{}  hdataflow(A;C)].  \mforall{}[hdfs:bag(hdataflow(A;C))].
    hdf-halt()  (hdfs)  >>=  Y  =  hdf-halt()  (hdfs)  >>=  \mlambda{}x.hdf-return(\{x\})  supposing  valueall-type(C)



Date html generated: 2015_07_17-AM-08_07_10
Last ObjectModification: 2015_01_27-PM-00_07_31

Home Index