Nuprl Lemma : hdf-bind-gen-left-halt
∀[A,B,C:Type]. ∀[Y:B ─→ hdataflow(A;C)]. ∀[hdfs:bag(hdataflow(A;C))].
  hdf-halt() (hdfs) >>= Y = hdf-halt() (hdfs) >>= λx.hdf-return({x}) ∈ hdataflow(A;C) supposing valueall-type(C)
Proof
Definitions occuring in Statement : 
hdf-bind-gen: X (hdfs) >>= Y
, 
hdf-return: hdf-return(x)
, 
hdf-halt: hdf-halt()
, 
hdataflow: hdataflow(A;B)
, 
valueall-type: valueall-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
single-bag: {x}
, 
bag: bag(T)
Lemmas : 
list_induction, 
all_wf, 
hdataflow_wf, 
bag_wf, 
equal_wf, 
bool_wf, 
hdf-halted_wf, 
iterate-hdataflow_wf, 
hdf-bind-gen_wf, 
hdf-halt_wf, 
hdf-return_wf, 
single-bag_wf, 
list_wf, 
iter_hdf_nil_lemma, 
iter_hdf_cons_lemma, 
hdf_halted_halt_red_lemma, 
hdf_ap_halt_lemma, 
bag_map_empty_lemma, 
bag-null_wf, 
eqtt_to_assert, 
assert-bag-null, 
btrue_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
equal-wf-T-base, 
hdf_halted_run_red_lemma, 
bfalse_wf, 
bag-filter_wf, 
bnot_wf, 
bag-map_wf, 
hdf-ap_wf, 
bag-append_wf, 
empty-bag_wf, 
subtype_rel_bag, 
assert_wf, 
hdf-bind-gen-ap, 
and_wf, 
squash_wf, 
true_wf, 
hdf-out_wf, 
hdf_out_halt_red_lemma, 
valueall-type-has-valueall, 
bag-valueall-type, 
product-valueall-type, 
hdataflow-valueall-type, 
bag-combine_wf, 
hdf-out-run, 
evalall-reduce
\mforall{}[A,B,C:Type].  \mforall{}[Y:B  {}\mrightarrow{}  hdataflow(A;C)].  \mforall{}[hdfs:bag(hdataflow(A;C))].
    hdf-halt()  (hdfs)  >>=  Y  =  hdf-halt()  (hdfs)  >>=  \mlambda{}x.hdf-return(\{x\})  supposing  valueall-type(C)
Date html generated:
2015_07_17-AM-08_07_10
Last ObjectModification:
2015_01_27-PM-00_07_31
Home
Index