Nuprl Lemma : csm-cubical-sigma
∀X,Delta:CubicalSet. ∀A:{X ⊢ _}. ∀B:{X.A ⊢ _}. ∀s:Delta ⟶ X.  ((Σ A B)s = Σ (A)s (B)(s o p;q) ∈ {Delta ⊢ _})
Proof
Definitions occuring in Statement : 
cubical-sigma: Σ A B, 
csm-adjoin: (s;u), 
cc-snd: q, 
cc-fst: p, 
cube-context-adjoin: X.A, 
csm-ap-type: (AF)s, 
cubical-type: {X ⊢ _}, 
csm-comp: G o F, 
cube-set-map: A ⟶ B, 
cubical-set: CubicalSet, 
all: ∀x:A. B[x], 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
cubical-type: {X ⊢ _}, 
cube-set-map: A ⟶ B, 
nat-trans: nat-trans(C;D;F;G), 
csm-ap-type: (AF)s, 
cubical-sigma: Σ A B, 
cubical-type-at: A(a), 
pi1: fst(t), 
and: P ∧ Q, 
top: Top, 
cubical-type-ap-morph: (u a f), 
pi2: snd(t), 
subtype_rel: A ⊆r B, 
cc-adjoin-cube: (v;u), 
cc-snd: q, 
csm-ap: (s)x, 
cc-fst: p, 
csm-comp: G o F, 
type-cat: TypeCat, 
cat-comp: cat-comp(C), 
compose: f o g, 
cube-context-adjoin: X.A, 
I-cube: X(I), 
functor-ob: ob(F), 
cat-arrow: cat-arrow(C), 
name-cat: NameCat, 
cat-ob: cat-ob(C), 
squash: ↓T, 
prop: ℙ, 
true: True, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
csm-adjoin: (s;u), 
trans-comp: t1 o t2, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
functor-arrow: arrow(F), 
cube-set-restriction: f(s)
Lemmas referenced : 
cubical-type-equal, 
csm-ap-type_wf, 
cubical-sigma_wf, 
cube-set-map_wf, 
cubical-type_wf, 
cube-context-adjoin_wf, 
cubical-set_wf, 
csm-ap_wf, 
csm-adjoin-ap, 
istype-void, 
I-cube_wf, 
list_wf, 
coordinate_name_wf, 
cc-adjoin-cube_wf, 
subtype_rel_self, 
cubical-type-at_wf, 
name-morph_wf, 
cube-set-restriction_wf, 
trans_comp_ap_lemma, 
ob_pair_lemma, 
cat_comp_tuple_lemma, 
subtype_rel-equal, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
csm-ap-restriction, 
iff_weakening_equal, 
ap_mk_nat_trans_lemma, 
cc-adjoin-cube-restriction
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
universeIsType, 
inhabitedIsType, 
setElimination, 
rename, 
productElimination, 
sqequalRule, 
dependent_pairEquality_alt, 
lambdaEquality_alt, 
productEquality, 
applyEquality, 
isect_memberEquality_alt, 
voidElimination, 
functionExtensionality, 
because_Cache, 
dependent_functionElimination, 
functionIsType, 
instantiate, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
applyLambdaEquality, 
dependent_set_memberEquality_alt, 
independent_pairFormation, 
productIsType, 
equalityIsType1
Latex:
\mforall{}X,Delta:CubicalSet.  \mforall{}A:\{X  \mvdash{}  \_\}.  \mforall{}B:\{X.A  \mvdash{}  \_\}.  \mforall{}s:Delta  {}\mrightarrow{}  X.    ((\mSigma{}  A  B)s  =  \mSigma{}  (A)s  (B)(s  o  p;q))
Date html generated:
2019_11_05-PM-00_26_42
Last ObjectModification:
2018_11_10-PM-03_06_05
Theory : cubical!sets
Home
Index