Nuprl Lemma : csm-cubical-subset-type-lemma

[Gamma,Delta:j⊢]. ∀[sigma:Delta j⟶ Gamma]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Delta(I+i)].
[J:fset(ℕ)]. ∀[f:J ⟶ I].
  (((A)sigma(f((i1)(rho))) A(f((i1)((sigma)rho))) ∈ Type) ∧ ((A)sigma(f((i0)(rho))) A(f((i0)((sigma)rho))) ∈ Type))


Proof




Definitions occuring in Statement :  csm-ap-type: (AF)s cubical-type-at: A(a) cubical-type: {X ⊢ _} csm-ap: (s)x cube_set_map: A ⟶ B cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-1: (i1) nc-0: (i0) add-name: I+i names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A and: P ∧ Q set: {x:A| B[x]}  universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q cand: c∧ B squash: T prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q true: True so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  csm-ap-type-at cubical-type-at_wf equal_wf squash_wf true_wf istype-universe I_cube_wf csm-ap_wf cube-set-restriction_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le nc-1_wf names-hom_wf fset_wf nat_wf csm-ap-restriction subtype_rel_self iff_weakening_equal nc-0_wf istype-nat fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void cube_set_map_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin Error :memTop,  hypothesis applyEquality lambdaEquality_alt imageElimination because_Cache hypothesisEquality instantiate equalityTransitivity equalitySymmetry universeIsType universeEquality dependent_set_memberEquality_alt setElimination rename dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality independent_pairFormation voidElimination inhabitedIsType imageMemberEquality baseClosed productElimination independent_pairEquality axiomEquality isect_memberEquality_alt isectIsTypeImplies setIsType functionIsType intEquality

Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[sigma:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].
\mforall{}[rho:Delta(I+i)].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].
    (((A)sigma(f((i1)(rho)))  =  A(f((i1)((sigma)rho))))
    \mwedge{}  ((A)sigma(f((i0)(rho)))  =  A(f((i0)((sigma)rho)))))



Date html generated: 2020_05_20-PM-03_44_43
Last ObjectModification: 2020_04_09-AM-10_58_40

Theory : cubical!type!theory


Home Index