Nuprl Lemma : csm-cubical-subset-type-lemma
∀[Gamma,Delta:j⊢]. ∀[sigma:Delta j⟶ Gamma]. ∀[A:{Gamma ⊢ _}]. ∀[I:fset(ℕ)]. ∀[i:{i:ℕ| ¬i ∈ I} ]. ∀[rho:Delta(I+i)].
∀[J:fset(ℕ)]. ∀[f:J ⟶ I].
  (((A)sigma(f((i1)(rho))) = A(f((i1)((sigma)rho))) ∈ Type) ∧ ((A)sigma(f((i0)(rho))) = A(f((i0)((sigma)rho))) ∈ Type))
Proof
Definitions occuring in Statement : 
csm-ap-type: (AF)s
, 
cubical-type-at: A(a)
, 
cubical-type: {X ⊢ _}
, 
csm-ap: (s)x
, 
cube_set_map: A ⟶ B
, 
cube-set-restriction: f(s)
, 
I_cube: A(I)
, 
cubical_set: CubicalSet
, 
nc-1: (i1)
, 
nc-0: (i0)
, 
add-name: I+i
, 
names-hom: I ⟶ J
, 
fset-member: a ∈ s
, 
fset: fset(T)
, 
int-deq: IntDeq
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
and: P ∧ Q
, 
cand: A c∧ B
, 
squash: ↓T
, 
prop: ℙ
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
csm-ap-type-at, 
cubical-type-at_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
I_cube_wf, 
csm-ap_wf, 
cube-set-restriction_wf, 
add-name_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
nc-1_wf, 
names-hom_wf, 
fset_wf, 
nat_wf, 
csm-ap-restriction, 
subtype_rel_self, 
iff_weakening_equal, 
nc-0_wf, 
istype-nat, 
fset-member_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
cube_set_map_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
Error :memTop, 
hypothesis, 
applyEquality, 
lambdaEquality_alt, 
imageElimination, 
because_Cache, 
hypothesisEquality, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
universeIsType, 
universeEquality, 
dependent_set_memberEquality_alt, 
setElimination, 
rename, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
independent_pairFormation, 
voidElimination, 
inhabitedIsType, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_pairEquality, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
setIsType, 
functionIsType, 
intEquality
Latex:
\mforall{}[Gamma,Delta:j\mvdash{}].  \mforall{}[sigma:Delta  j{}\mrightarrow{}  Gamma].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[I:fset(\mBbbN{})].  \mforall{}[i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\}  ].
\mforall{}[rho:Delta(I+i)].  \mforall{}[J:fset(\mBbbN{})].  \mforall{}[f:J  {}\mrightarrow{}  I].
    (((A)sigma(f((i1)(rho)))  =  A(f((i1)((sigma)rho))))
    \mwedge{}  ((A)sigma(f((i0)(rho)))  =  A(f((i0)((sigma)rho)))))
Date html generated:
2020_05_20-PM-03_44_43
Last ObjectModification:
2020_04_09-AM-10_58_40
Theory : cubical!type!theory
Home
Index