Nuprl Lemma : csm-equiv_term

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(T;A)}]. ∀[t:{G, phi ⊢ _:T}]. ∀[a:{G ⊢ _:A}].
[c:{G, phi ⊢ _:(Path_A app(equiv-fun(f); t))}]. ∀[cA:G +⊢ Compositon(A)]. ∀[cT:G +⊢ Compositon(T)]. ∀[H:j⊢].
[s:H j⟶ G].
  ((equiv [phi ⊢→ (t,c)] a)s
  equiv (f)s [(phi)s ⊢→ ((t)s,(c)s)] (a)s
  ∈ {H ⊢ _:Fiber(equiv-fun((f)s);(a)s)[(phi)s |⟶ fiber-point((t)s;(c)s)]})


Proof




Definitions occuring in Statement :  equiv_term: equiv [phi ⊢→ (t,c)] a csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) equiv-fun: equiv-fun(f) cubical-equiv: Equiv(T;A) fiber-point: fiber-point(t;c) cubical-fiber: Fiber(w;a) path-type: (Path_A b) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 cubical-app: app(w; u) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a equiv_term: equiv [phi ⊢→ (t,c)] a squash: T prop: all: x:A. B[x] implies:  Q true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp)
Lemmas referenced :  cubical-app_wf_fun thin-context-subset cubical-fun-subset equiv-fun_wf subset-cubical-term context-subset-is-subset cubical-fun_wf fiber-subset cubical-fiber_wf subset-cubical-type cubical-term-eqcd context-subset_wf fiber-point_wf context-subset-term-subtype csm-ap-term_wf face-type_wf csm-face-type context-subset-map equal_wf squash_wf true_wf istype-universe cubical-type_wf csm-cubical-fiber csm-ap-type_wf csm-cubical-fun subtype_rel_self iff_weakening_equal cube_set_map_wf composition-structure_wf cubical_set_cumulativity-i-j istype-cubical-term path-type_wf cubical-equiv_wf cubical_set_wf constrained-cubical-term_wf cubical-type-cumulativity2 csm-equiv-term fiber-comp_wf cube_set_map_cumulativity-i-j csm-fiber-comp-sq csm-equiv-fun csm-fiber-comp composition-structure-cumulativity csm-cubical-equiv sub_cubical_set_self subset-cubical-term2 equiv-term_wf csm-cubical-app csm-path-type csm-fiber-point
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis sqequalRule Error :memTop,  applyEquality independent_isectElimination equalityTransitivity equalitySymmetry lambdaEquality_alt cumulativity universeIsType universeEquality hyp_replacement instantiate imageElimination dependent_functionElimination inhabitedIsType lambdaFormation_alt equalityIstype independent_functionElimination natural_numberEquality imageMemberEquality baseClosed productElimination applyLambdaEquality

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(T;A)\}].  \mforall{}[t:\{G,  phi  \mvdash{}  \_:T\}].
\mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[c:\{G,  phi  \mvdash{}  \_:(Path\_A  a  app(equiv-fun(f);  t))\}].  \mforall{}[cA:G  +\mvdash{}  Compositon(A)].
\mforall{}[cT:G  +\mvdash{}  Compositon(T)].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((equiv  f  [phi  \mvdash{}\mrightarrow{}  (t,c)]  a)s  =  equiv  (f)s  [(phi)s  \mvdash{}\mrightarrow{}  ((t)s,(c)s)]  (a)s)



Date html generated: 2020_05_20-PM-05_38_18
Last ObjectModification: 2020_05_02-PM-03_59_30

Theory : cubical!type!theory


Home Index