Nuprl Lemma : csm-equiv-term

[G:j⊢]. ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G ⊢ _}]. ∀[f:{G ⊢ _:Equiv(T;A)}]. ∀[t:{G, phi ⊢ _:T}]. ∀[a:{G ⊢ _:A}].
[c:{G, phi ⊢ _:(Path_A app(equiv-fun(f); t))}]. ∀[cF:G ⊢ Compositon(Fiber(equiv-fun(f);a))]. ∀[H:j⊢]. ∀[s:H j⟶ G].
  ((equiv [phi ⊢→ (t,  c)] a)s
  equiv (f)s [(phi)s ⊢→ ((t)s,  (c)s)] (a)s
  ∈ {H ⊢ _:Fiber(equiv-fun((f)s);(a)s)[(phi)s |⟶ fiber-point((t)s;(c)s)]})


Proof




Definitions occuring in Statement :  equiv-term: equiv [phi ⊢→ (t,  c)] a csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) equiv-fun: equiv-fun(f) cubical-equiv: Equiv(T;A) fiber-point: fiber-point(t;c) cubical-fiber: Fiber(w;a) path-type: (Path_A b) constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 cubical-app: app(w; u) csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cube_set_map: A ⟶ B cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a equiv-term: equiv [phi ⊢→ (t,  c)] a all: x:A. B[x] implies:  Q let: let guard: {T} cc-snd: q interval-type: 𝕀 cc-fst: p csm-ap-type: (AF)s constant-cubical-type: (X) cubical-path-app: pth r cubicalpath-app: pth r squash: T prop: true: True iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} csm+: tau+ csm-comp: F csm-ap-term: (t)s csm-ap: (s)x csm-adjoin: (s;u) pi1: fst(t) compose: g same-cubical-type: Gamma ⊢ B interval-1: 1(𝕀) csm-id-adjoin: [u] csm-id: 1(X) cubical-type: {X ⊢ _} cubical-fiber: Fiber(w;a) cubical-sigma: Σ B cc-adjoin-cube: (v;u) comp_trm: comp_trm csm-comp-structure: (cA)tau composition-structure: Gamma ⊢ Compositon(A) pi2: snd(t) csm-path-ap-q: csm-path-ap-q(H;G;s;t) interval-0: 0(𝕀) respects-equality: respects-equality(S;T)
Lemmas referenced :  cubical-app_wf_fun context-subset_wf thin-context-subset cubical-fun-subset equiv-fun_wf subset-cubical-term context-subset-is-subset cubical-fun_wf equiv-contr_wf cubical-fiber_wf fiber-subset cubical-term-eqcd fiber-point_wf context-subset-term-subtype csm-comp_term csm-ap-type_wf cube-context-adjoin_wf interval-type_wf cc-fst_wf_interval csm-comp-structure_wf contr-center_wf contr-path_wf contractible-type-subset contractible-type_wf cube_set_map_wf composition-structure_wf istype-cubical-term path-type_wf cubical-type-cumulativity2 cubical_set_cumulativity-i-j cubical-equiv_wf cubical-type_wf face-type_wf cubical_set_wf cubical-path-app_wf csm-ap-term_wf csm-path-type cc-snd_wf cubical-path-app-0 cubical-path-ap-id-adjoin equal_wf squash_wf true_wf istype-universe csm-ap-id-type subset-cubical-type subtype_rel_self iff_weakening_equal csm_id_adjoin_fst_type_lemma csm-id_wf csm+_wf_interval csm-id-adjoin_wf-interval-1 csm-face-type csm-id-adjoin_wf interval-1_wf csm-context-subset-subtype2 context-subset-map csm-ap-term-wf-subset face-term-implies-same csm-equiv-fun cubical_type_at_pair_lemma cubical_type_ap_morph_pair_lemma csm-cubical-fiber comp_trm_wf constrained-cubical-term_wf csm-id-adjoin_wf-interval-0 thin-context-subset-adjoin composition-function_wf csm+_wf subtype_rel-equal csm-interval-type csm-equiv-contr csm-fiber-point csm-contr-path csm-cubical-path-app csm-path-ap-q_wf cube_set_map_cumulativity-i-j context-adjoin-subset3 csm-contr-center interval-0_wf respects-equality-context-subset-term cubical-path-app-1 subset-cubical-term2 sub_cubical_set_self csm-cubical-fun csm-cubical-equiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis because_Cache sqequalRule Error :memTop,  applyEquality independent_isectElimination inhabitedIsType lambdaFormation_alt rename equalityTransitivity equalitySymmetry lambdaEquality_alt cumulativity universeIsType universeEquality hyp_replacement instantiate equalityIstype dependent_functionElimination independent_functionElimination imageElimination natural_numberEquality imageMemberEquality baseClosed productElimination dependent_set_memberEquality_alt setEquality applyLambdaEquality setElimination

Latex:
\mforall{}[G:j\mvdash{}].  \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G  \mvdash{}  \_\}].  \mforall{}[f:\{G  \mvdash{}  \_:Equiv(T;A)\}].  \mforall{}[t:\{G,  phi  \mvdash{}  \_:T\}].
\mforall{}[a:\{G  \mvdash{}  \_:A\}].  \mforall{}[c:\{G,  phi  \mvdash{}  \_:(Path\_A  a  app(equiv-fun(f);  t))\}].
\mforall{}[cF:G  \mvdash{}  Compositon(Fiber(equiv-fun(f);a))].  \mforall{}[H:j\mvdash{}].  \mforall{}[s:H  j{}\mrightarrow{}  G].
    ((equiv  f  [phi  \mvdash{}\mrightarrow{}  (t,    c)]  a)s  =  equiv  (f)s  [(phi)s  \mvdash{}\mrightarrow{}  ((t)s,    (c)s)]  (a)s)



Date html generated: 2020_05_20-PM-05_38_00
Last ObjectModification: 2020_04_18-PM-11_52_57

Theory : cubical!type!theory


Home Index