Nuprl Lemma : cubical-isect-elim_wf
∀[X:⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[t:{X ⊢ _:⋂A B}].  (cubical-isect-elim(t) ∈ {X.A ⊢ _:B})
Proof
Definitions occuring in Statement : 
cubical-isect-elim: cubical-isect-elim(t)
, 
cubical-isect: ⋂A B
, 
cube-context-adjoin: X.A
, 
cubical-term: {X ⊢ _:A}
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
cubical-term: {X ⊢ _:A}
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
cubical-isect-elim: cubical-isect-elim(t)
, 
cube-context-adjoin: X.A
, 
top: Top
, 
pi1: fst(t)
, 
subtype_rel: A ⊆r B
, 
implies: P 
⇒ Q
, 
cubical-isect: ⋂A B
, 
cubical-isect-family: cubical-isect-family(X;A;B;I;a)
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
, 
cc-adjoin-cube: (v;u)
, 
pi2: snd(t)
, 
cube-set-restriction: f(s)
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
all_wf, 
fset_wf, 
nat_wf, 
names-hom_wf, 
I_cube_wf, 
cube-context-adjoin_wf, 
equal_wf, 
cubical-type-at_wf, 
cube-set-restriction_wf, 
cubical-type-ap-morph_wf, 
cubical-term_wf, 
cubical-isect_wf, 
cubical-type_wf, 
cubical_set_wf, 
I_cube_pair_redex_lemma, 
cubical_type_at_pair_lemma, 
nh-id_wf, 
cc-adjoin-cube_wf, 
subtype_rel-equal, 
cube-set-restriction-id, 
squash_wf, 
true_wf, 
cube_set_restriction_pair_lemma, 
cc-adjoin-cube-restriction, 
subtype_rel_self, 
iff_weakening_equal, 
cubical_type_ap_morph_pair_lemma, 
nh-id-left, 
nh-id-right, 
and_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
dependent_set_memberEquality, 
cut, 
thin, 
instantiate, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
applyEquality, 
setElimination, 
rename, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
isectEquality, 
independent_isectElimination, 
imageElimination, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
productEquality, 
applyLambdaEquality, 
universeEquality, 
independent_pairFormation
Latex:
\mforall{}[X:\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[t:\{X  \mvdash{}  \_:\mcap{}A  B\}].    (cubical-isect-elim(t)  \mmember{}  \{X.A  \mvdash{}  \_:B\})
Date html generated:
2018_05_23-PM-06_27_51
Last ObjectModification:
2018_05_20-PM-09_30_16
Theory : cubical!type!theory
Home
Index