Nuprl Lemma : cubical-isect-elim_wf

[X:⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}]. ∀[t:{X ⊢ _:⋂B}].  (cubical-isect-elim(t) ∈ {X.A ⊢ _:B})


Proof




Definitions occuring in Statement :  cubical-isect-elim: cubical-isect-elim(t) cubical-isect: B cube-context-adjoin: X.A cubical-term: {X ⊢ _:A} cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-term: {X ⊢ _:A} so_lambda: λ2x.t[x] prop: so_apply: x[s] all: x:A. B[x] cubical-isect-elim: cubical-isect-elim(t) cube-context-adjoin: X.A top: Top pi1: fst(t) subtype_rel: A ⊆B implies:  Q cubical-isect: B cubical-isect-family: cubical-isect-family(X;A;B;I;a) uimplies: supposing a squash: T true: True cc-adjoin-cube: (v;u) pi2: snd(t) cube-set-restriction: f(s) guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  all_wf fset_wf nat_wf names-hom_wf I_cube_wf cube-context-adjoin_wf equal_wf cubical-type-at_wf cube-set-restriction_wf cubical-type-ap-morph_wf cubical-term_wf cubical-isect_wf cubical-type_wf cubical_set_wf I_cube_pair_redex_lemma cubical_type_at_pair_lemma nh-id_wf cc-adjoin-cube_wf subtype_rel-equal cube-set-restriction-id squash_wf true_wf cube_set_restriction_pair_lemma cc-adjoin-cube-restriction subtype_rel_self iff_weakening_equal cubical_type_ap_morph_pair_lemma nh-id-left nh-id-right and_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation dependent_set_memberEquality cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis sqequalRule lambdaEquality hypothesisEquality applyEquality setElimination rename dependent_functionElimination isect_memberEquality voidElimination voidEquality productElimination lambdaFormation equalityTransitivity equalitySymmetry independent_functionElimination isectEquality independent_isectElimination imageElimination because_Cache natural_numberEquality imageMemberEquality baseClosed hyp_replacement productEquality applyLambdaEquality universeEquality independent_pairFormation

Latex:
\mforall{}[X:\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].  \mforall{}[t:\{X  \mvdash{}  \_:\mcap{}A  B\}].    (cubical-isect-elim(t)  \mmember{}  \{X.A  \mvdash{}  \_:B\})



Date html generated: 2018_05_23-PM-06_27_51
Last ObjectModification: 2018_05_20-PM-09_30_16

Theory : cubical!type!theory


Home Index