Nuprl Lemma : cubical-isect_wf

[X:⊢]. ∀[A:{X ⊢ _}]. ∀[B:{X.A ⊢ _}].  X ⊢ ⋂B


Proof




Definitions occuring in Statement :  cubical-isect: B cube-context-adjoin: X.A cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T cubical-isect: B cubical-type: {X ⊢ _} cubical-isect-family: cubical-isect-family(X;A;B;I;a) subtype_rel: A ⊆B uimplies: supposing a squash: T all: x:A. B[x] true: True prop: guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q top: Top cand: c∧ B
Lemmas referenced :  cubical-type_wf cube-context-adjoin_wf cubical_set_wf cubical-isect-family_wf I_cube_wf fset_wf nat_wf names-hom_wf cube-set-restriction_wf nh-comp_wf subtype_rel-equal cubical-type-at_wf cube-set-restriction-comp cc-adjoin-cube_wf equal_wf squash_wf true_wf istype-universe istype-cubical-type-at subtype_rel_self iff_weakening_equal cubical-type-ap-morph_wf nh-comp-assoc cc-adjoin-cube-restriction istype-void nh-id-right cube-set-restriction-id nh-id_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut dependent_set_memberEquality_alt sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry universeIsType extract_by_obid isectElimination thin hypothesisEquality isect_memberEquality_alt isectIsTypeImplies inhabitedIsType dependent_pairEquality_alt lambdaEquality_alt setElimination rename functionIsType because_Cache applyEquality independent_isectElimination imageElimination dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed instantiate universeEquality productElimination independent_functionElimination lambdaFormation_alt hyp_replacement independent_pairFormation productIsType equalityIstype applyLambdaEquality voidElimination functionExtensionality isectEquality equalityIsType1

Latex:
\mforall{}[X:\mvdash{}].  \mforall{}[A:\{X  \mvdash{}  \_\}].  \mforall{}[B:\{X.A  \mvdash{}  \_\}].    X  \mvdash{}  \mcap{}A  B



Date html generated: 2019_11_05-PM-00_23_27
Last ObjectModification: 2018_12_16-PM-04_53_27

Theory : cubical!type!theory


Home Index