Nuprl Lemma : pres-invariant

[G,H:j⊢].
  ∀[phi:{G ⊢ _:𝔽}]. ∀[A,T:{G.𝕀 ⊢ _}]. ∀[f:{G.𝕀 ⊢ _:(T ⟶ A)}]. ∀[t:{G.𝕀(phi)p ⊢ _:T}].
  ∀[t0:{G ⊢ _:(T)[0(𝕀)][phi |⟶ t[0]]}]. ∀[cT:G.𝕀 +⊢ Compositon(T)]. ∀[cA:G.𝕀 +⊢ Compositon(A)].
    (pres [phi ⊢→ t] t0
    pres [phi ⊢→ t] t0
    ∈ {G ⊢ _:(Path_(A)[1(𝕀)] pres-c1(G;phi;f;t;t0;cA) pres-c2(G;phi;f;t;t0;cT))}) 
  supposing G ∈ CubicalSet{j}


Proof




Definitions occuring in Statement :  pres: pres [phi ⊢→ t] t0 pres-c2: pres-c2(G;phi;f;t;t0;cT) pres-c1: pres-c1(G;phi;f;t;t0;cA) composition-structure: Gamma ⊢ Compositon(A) path-type: (Path_A b) partial-term-0: u[0] constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} context-subset: Gamma, phi face-type: 𝔽 interval-1: 1(𝕀) interval-0: 0(𝕀) interval-type: 𝕀 cubical-fun: (A ⟶ B) csm-id-adjoin: [u] cc-fst: p cube-context-adjoin: X.A csm-ap-term: (t)s cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type: {X ⊢ _} cubical_set: CubicalSet uimplies: supposing a uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T subtype_rel: A ⊆B and: P ∧ Q composition-structure: Gamma ⊢ Compositon(A) composition-function: composition-function{j:l,i:l}(Gamma;A) uniform-comp-function: uniform-comp-function{j:l, i:l}(Gamma; A; comp) all: x:A. B[x] prop: constrained-cubical-term: {Gamma ⊢ _:A[phi |⟶ t]} squash: T true: True implies:  Q rev_implies:  Q iff: ⇐⇒ Q guard: {T} csm-ap: (s)x csm-adjoin: (s;u) csm-id: 1(X) csm-ap-type: (AF)s csm-id-adjoin: [u] interval-1: 1(𝕀) cubical-type: {X ⊢ _}
Lemmas referenced :  context-subset-term-subtype cube-context-adjoin_wf interval-type_wf cubical-fun_wf csm-ap-term_wf face-type_wf csm-face-type cc-fst_wf_interval cubical-app_wf_fun thin-context-subset cubical-fun-subset pres_wf cubical_set_cumulativity-i-j cubical-type-cumulativity2 subtype_rel_self composition-structure_wf equal_wf csm-ap-type_wf csm-id-adjoin_wf interval-0_wf partial-term-0_wf constrained-cubical-term-eqcd istype-cubical-term context-subset_wf cubical-type_wf cubical_set_wf cubical-term-eqcd path-type_wf csm-id-adjoin_wf-interval-1 composition-function-cumulativity pres-c1_wf pres-c2_wf cubical-term_wf squash_wf true_wf iff_weakening_equal istype-universe cube_set_map_wf subtype_rel-equal interval-1_wf cubical-type-cumulativity csm-id-adjoin_wf-interval-0 constrained-cubical-term_wf composition-function_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut hypothesisEquality applyEquality thin introduction extract_by_obid sqequalHypSubstitution isectElimination instantiate hypothesis sqequalRule Error :memTop,  because_Cache dependent_set_memberEquality_alt independent_pairFormation equalityTransitivity equalitySymmetry productIsType equalityIstype inhabitedIsType hyp_replacement applyLambdaEquality universeIsType independent_isectElimination dependent_functionElimination rename setElimination lambdaEquality_alt productElimination imageElimination natural_numberEquality imageMemberEquality baseClosed independent_functionElimination universeEquality

Latex:
\mforall{}[G,H:j\mvdash{}].
    \mforall{}[phi:\{G  \mvdash{}  \_:\mBbbF{}\}].  \mforall{}[A,T:\{G.\mBbbI{}  \mvdash{}  \_\}].  \mforall{}[f:\{G.\mBbbI{}  \mvdash{}  \_:(T  {}\mrightarrow{}  A)\}].  \mforall{}[t:\{G.\mBbbI{},  (phi)p  \mvdash{}  \_:T\}].
    \mforall{}[t0:\{G  \mvdash{}  \_:(T)[0(\mBbbI{})][phi  |{}\mrightarrow{}  t[0]]\}].  \mforall{}[cT:G.\mBbbI{}  +\mvdash{}  Compositon(T)].  \mforall{}[cA:G.\mBbbI{}  +\mvdash{}  Compositon(A)].
        (pres  f  [phi  \mvdash{}\mrightarrow{}  t]  t0  =  pres  f  [phi  \mvdash{}\mrightarrow{}  t]  t0) 
    supposing  H  =  G



Date html generated: 2020_05_20-PM-05_32_52
Last ObjectModification: 2020_05_02-PM-03_55_40

Theory : cubical!type!theory


Home Index