Nuprl Lemma : angle-bisector-unique

e:EuclideanPlane. ∀a,b,c,a',c',x,y:Point.
  (a bc  out(b aa')  out(b cc')  a-x-c  a'-y-c'  abx ≅a cbx  a'by ≅a c'by  {out(b xy) ∧ abx ≅a a'by})


Proof




Definitions occuring in Statement :  geo-out: out(p ab) geo-cong-angle: abc ≅a xyz euclidean-plane: EuclideanPlane geo-strict-between: a-b-c geo-lsep: bc geo-point: Point guard: {T} all: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  geo-out: out(p ab) geo-midpoint: a=m=b iff: ⇐⇒ Q basic-geometry-: BasicGeometry- uimplies: supposing a subtype_rel: A ⊆B prop: uall: [x:A]. B[x] euclidean-plane: EuclideanPlane exists: x:A. B[x] basic-geometry: BasicGeometry cand: c∧ B and: P ∧ Q guard: {T} member: t ∈ T implies:  Q all: x:A. B[x]
Lemmas referenced :  out-cong-angle out-preserves-angle-cong_1 geo-out_transitivity geo-cong-angle_functionality geo-out_functionality geo-strict-between_functionality geo-midpoint_functionality at-most-one-midpoint geo-cong-angle-transitivity geo-sas2 geo-congruent-right-comm geo-cong-angle-symm2 euclidean-plane-axioms geo-congruent-refl geo-congruent-symmetry geo-eq_weakening geo-out_weakening geo-between-symmetry geo-strict-between-implies-between geo-out-iff-between1 geo-strict-between-sep3 geo-point_wf geo-lsep_wf geo-out_wf geo-primitives_wf euclidean-plane-structure_wf euclidean-plane_wf subtype_rel_transitivity euclidean-plane-subtype euclidean-plane-structure-subtype geo-strict-between_wf geo-cong-angle_wf geo-sep-O-X lsep-implies-sep geo-sep-sym geo-X_wf geo-O_wf geo-proper-extend-exists geo-out_inversion lsep-all-sym lsep-symmetry out-preserves-lsep geo-out-interior-point-exists
Rules used in proof :  promote_hyp productIsType independent_pairFormation dependent_pairFormation_alt inhabitedIsType independent_isectElimination instantiate applyEquality isectElimination universeIsType rename setElimination sqequalRule productElimination hypothesis because_Cache independent_functionElimination hypothesisEquality thin dependent_functionElimination sqequalHypSubstitution extract_by_obid introduction cut lambdaFormation_alt sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c,a',c',x,y:Point.
    (a  \#  bc
    {}\mRightarrow{}  out(b  aa')
    {}\mRightarrow{}  out(b  cc')
    {}\mRightarrow{}  a-x-c
    {}\mRightarrow{}  a'-y-c'
    {}\mRightarrow{}  abx  \mcong{}\msuba{}  cbx
    {}\mRightarrow{}  a'by  \mcong{}\msuba{}  c'by
    {}\mRightarrow{}  \{out(b  xy)  \mwedge{}  abx  \mcong{}\msuba{}  a'by\})



Date html generated: 2019_10_29-AM-09_20_43
Last ObjectModification: 2019_10_18-PM-04_37_29

Theory : euclidean!plane!geometry


Home Index