Nuprl Lemma : geo-lt-angle-left

e:EuclideanPlane. ∀a,b,x,y:Point.  (x leftof ab  leftof ab  leftof xa  yab < xab)


Proof




Definitions occuring in Statement :  geo-lt-angle: abc < xyz euclidean-plane: EuclideanPlane geo-left: leftof bc geo-point: Point all: x:A. B[x] implies:  Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] subtype_rel: A ⊆B guard: {T} uimplies: supposing a prop: exists: x:A. B[x] and: P ∧ Q geo-colinear-set: geo-colinear-set(e; L) l_all: (∀x∈L.P[x]) top: Top int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) false: False select: L[n] cons: [a b] subtract: m cand: c∧ B basic-geometry: BasicGeometry geo-lsep: bc geo-lt-angle: abc < xyz oriented-plane: OrientedPlane geo-out: out(p ab)
Lemmas referenced :  use-plane-sep_strict geo-left_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf left-symmetry geo-colinear-left-out2 geo-colinear-is-colinear-set length_of_cons_lemma istype-void length_of_nil_lemma decidable__le full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma istype-le istype-less_than left-convex geo-strict-between-implies-between geo-between-symmetry geo-strict-between-sep3 geo-between_wf geo-cong-angle-refl left-implies-sep geo-out_weakening geo-eq_weakening geo-sep-sym geo-out_inversion out-preserves-angle-cong_1 geo-out-colinear not-lsep-if-colinear lsep-all-sym geo-out_wf geo-between-trivial lsep-not-between colinear-lsep-cycle lsep-all-sym2 euclidean-plane-axioms geo-strict-between-sep2 geo-cong-angle_wf geo-sep_wf geo-cong-angle-symmetry geo-lt-angle-symm
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination universeIsType isectElimination applyEquality hypothesis instantiate independent_isectElimination sqequalRule because_Cache inhabitedIsType productElimination rename isect_memberEquality_alt voidElimination dependent_set_memberEquality_alt natural_numberEquality independent_pairFormation unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt productIsType inrFormation_alt inlFormation_alt functionIsType

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,x,y:Point.    (x  leftof  ab  {}\mRightarrow{}  y  leftof  ab  {}\mRightarrow{}  y  leftof  xa  {}\mRightarrow{}  yab  <  xab)



Date html generated: 2019_10_16-PM-02_28_16
Last ObjectModification: 2019_09_24-PM-04_01_30

Theory : euclidean!plane!geometry


Home Index