Nuprl Lemma : orthogonal-group_wf

[rv:InnerProductSpace]. (O(rv) ∈ s-Group)


Proof




Definitions occuring in Statement :  orthogonal-group: O(rv) inner-product-space: InnerProductSpace s-group: s-Group uall: [x:A]. B[x] member: t ∈ T
Definitions unfolded in proof :  squash: T sq_stable: SqStable(P) prop: implies:  Q cand: c∧ B pi1: fst(t) and: P ∧ Q sg-subgroup: sg-subgroup(sg;x.P[x]) so_apply: x[s] top: Top uimplies: supposing a guard: {T} subtype_rel: A ⊆B all: x:A. B[x] so_lambda: λ2x.t[x] orthogonal-group: O(rv) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rv-orthogonal-inverse sq_stable__rv-orthogonal rv-orthogonal-compose rv-perm-op rv-perm-inv rv-orthogonal-id rv-perm-id s-group_subtype1 top_wf subtype_rel_product rv-perm-point separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-point_wf pi1_wf_top rv-orthogonal_wf rv-permutation-group_wf mk-s-subgroup_wf
Rules used in proof :  imageElimination baseClosed imageMemberEquality independent_functionElimination equalitySymmetry equalityTransitivity axiomEquality productElimination independent_pairFormation lambdaFormation rename setElimination voidEquality voidElimination isect_memberEquality independent_isectElimination instantiate applyEquality functionEquality dependent_functionElimination because_Cache lambdaEquality hypothesis hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  (O(rv)  \mmember{}  s-Group)



Date html generated: 2016_11_08-AM-09_21_19
Last ObjectModification: 2016_11_03-PM-01_43_57

Theory : inner!product!spaces


Home Index