Nuprl Lemma : orthogonal-group_wf
∀[rv:InnerProductSpace]. (O(rv) ∈ s-Group)
Proof
Definitions occuring in Statement : 
orthogonal-group: O(rv)
, 
inner-product-space: InnerProductSpace
, 
s-group: s-Group
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
Definitions unfolded in proof : 
squash: ↓T
, 
sq_stable: SqStable(P)
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
cand: A c∧ B
, 
pi1: fst(t)
, 
and: P ∧ Q
, 
sg-subgroup: sg-subgroup(sg;x.P[x])
, 
so_apply: x[s]
, 
top: Top
, 
uimplies: b supposing a
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
orthogonal-group: O(rv)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
rv-orthogonal-inverse, 
sq_stable__rv-orthogonal, 
rv-orthogonal-compose, 
rv-perm-op, 
rv-perm-inv, 
rv-orthogonal-id, 
rv-perm-id, 
s-group_subtype1, 
top_wf, 
subtype_rel_product, 
rv-perm-point, 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
ss-point_wf, 
pi1_wf_top, 
rv-orthogonal_wf, 
rv-permutation-group_wf, 
mk-s-subgroup_wf
Rules used in proof : 
imageElimination, 
baseClosed, 
imageMemberEquality, 
independent_functionElimination, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
productElimination, 
independent_pairFormation, 
lambdaFormation, 
rename, 
setElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
independent_isectElimination, 
instantiate, 
applyEquality, 
functionEquality, 
dependent_functionElimination, 
because_Cache, 
lambdaEquality, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
sqequalRule, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace].  (O(rv)  \mmember{}  s-Group)
Date html generated:
2016_11_08-AM-09_21_19
Last ObjectModification:
2016_11_03-PM-01_43_57
Theory : inner!product!spaces
Home
Index