Nuprl Lemma : sq_stable__rv-orthogonal

[rv:InnerProductSpace]. ∀f:Point ⟶ Point. SqStable(Orthogonal(f))


Proof




Definitions occuring in Statement :  rv-orthogonal: Orthogonal(f) inner-product-space: InnerProductSpace ss-point: Point sq_stable: SqStable(P) uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x]
Definitions unfolded in proof :  false: False not: ¬A ss-eq: x ≡ y sq_stable: SqStable(P) implies:  Q so_apply: x[s] and: P ∧ Q prop: so_lambda: λ2x.t[x] uimplies: supposing a guard: {T} subtype_rel: A ⊆B all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] rv-orthogonal: Orthogonal(f)
Lemmas referenced :  squash_wf req_witness ss-sep_wf sq_stable__req sq_stable__ss-eq sq_stable__all rv-mul_wf real_wf rv-ip_wf req_wf rv-add_wf ss-eq_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-point_wf all_wf sq_stable__and
Rules used in proof :  voidElimination independent_pairEquality productElimination dependent_functionElimination functionEquality independent_functionElimination isect_memberEquality functionExtensionality productEquality because_Cache lambdaEquality independent_isectElimination instantiate hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid lambdaFormation cut introduction isect_memberFormation computationStep sqequalTransitivity sqequalReflexivity sqequalRule sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}f:Point  {}\mrightarrow{}  Point.  SqStable(Orthogonal(f))



Date html generated: 2016_11_08-AM-09_17_45
Last ObjectModification: 2016_11_03-AM-11_49_32

Theory : inner!product!spaces


Home Index