Nuprl Lemma : mk-s-subgroup_wf

[sg:s-Group]. ∀[P:Point ⟶ ℙ].  mk-s-subgroup(sg;x.P[x]) ∈ s-Group supposing sg-subgroup(sg;x.P[x])


Proof




Definitions occuring in Statement :  mk-s-subgroup: mk-s-subgroup(sg;x.P[x]) sg-subgroup: sg-subgroup(sg;x.P[x]) s-group: s-Group ss-point: Point uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  sg-inv: x^-1 sg-op: (x y) or: P ∨ Q guard: {T} btrue: tt ifthenelse: if then else fi  eq_atom: =a y record-select: r.x record+: record+ s-group: s-Group cand: c∧ B implies:  Q all: x:A. B[x] subtype_rel: A ⊆B prop: so_apply: x[s] so_lambda: λ2x.t[x] top: Top mk-s-subgroup: mk-s-subgroup(sg;x.P[x]) and: P ∧ Q sg-subgroup: sg-subgroup(sg;x.P[x]) uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  subtype_rel_dep_function or_wf ss-sep_wf subtype_rel_self ss-eq_wf all_wf sg-op-inv sg-op-id set_wf sg-assoc sg-op_wf sg-inv_wf sg-id_wf set-ss_wf set-ss-sep set-ss-eq s-group_wf s-group_subtype1 ss-point_wf sg-subgroup_wf set-ss-point mk-s-group_wf
Rules used in proof :  independent_isectElimination tokenEquality dependentIntersectionEqElimination dependentIntersectionElimination productEquality independent_pairFormation lambdaFormation setEquality independent_functionElimination dependent_functionElimination rename setElimination dependent_set_memberEquality universeEquality cumulativity functionEquality functionExtensionality applyEquality lambdaEquality hypothesisEquality equalitySymmetry equalityTransitivity axiomEquality because_Cache hypothesis voidEquality voidElimination isect_memberEquality sqequalRule isectElimination extract_by_obid thin productElimination sqequalHypSubstitution cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[sg:s-Group].  \mforall{}[P:Point  {}\mrightarrow{}  \mBbbP{}].    mk-s-subgroup(sg;x.P[x])  \mmember{}  s-Group  supposing  sg-subgroup(sg;x.P[x])



Date html generated: 2016_11_08-AM-09_12_36
Last ObjectModification: 2016_11_03-PM-00_23_44

Theory : inner!product!spaces


Home Index