Nuprl Lemma : mk-s-subgroup_wf
∀[sg:s-Group]. ∀[P:Point ⟶ ℙ].  mk-s-subgroup(sg;x.P[x]) ∈ s-Group supposing sg-subgroup(sg;x.P[x])
Proof
Definitions occuring in Statement : 
mk-s-subgroup: mk-s-subgroup(sg;x.P[x])
, 
sg-subgroup: sg-subgroup(sg;x.P[x])
, 
s-group: s-Group
, 
ss-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
sg-inv: x^-1
, 
sg-op: (x y)
, 
or: P ∨ Q
, 
guard: {T}
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
record-select: r.x
, 
record+: record+, 
s-group: s-Group
, 
cand: A c∧ B
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
top: Top
, 
mk-s-subgroup: mk-s-subgroup(sg;x.P[x])
, 
and: P ∧ Q
, 
sg-subgroup: sg-subgroup(sg;x.P[x])
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
subtype_rel_dep_function, 
or_wf, 
ss-sep_wf, 
subtype_rel_self, 
ss-eq_wf, 
all_wf, 
sg-op-inv, 
sg-op-id, 
set_wf, 
sg-assoc, 
sg-op_wf, 
sg-inv_wf, 
sg-id_wf, 
set-ss_wf, 
set-ss-sep, 
set-ss-eq, 
s-group_wf, 
s-group_subtype1, 
ss-point_wf, 
sg-subgroup_wf, 
set-ss-point, 
mk-s-group_wf
Rules used in proof : 
independent_isectElimination, 
tokenEquality, 
dependentIntersectionEqElimination, 
dependentIntersectionElimination, 
productEquality, 
independent_pairFormation, 
lambdaFormation, 
setEquality, 
independent_functionElimination, 
dependent_functionElimination, 
rename, 
setElimination, 
dependent_set_memberEquality, 
universeEquality, 
cumulativity, 
functionEquality, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
hypothesisEquality, 
equalitySymmetry, 
equalityTransitivity, 
axiomEquality, 
because_Cache, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
sqequalRule, 
isectElimination, 
extract_by_obid, 
thin, 
productElimination, 
sqequalHypSubstitution, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[sg:s-Group].  \mforall{}[P:Point  {}\mrightarrow{}  \mBbbP{}].    mk-s-subgroup(sg;x.P[x])  \mmember{}  s-Group  supposing  sg-subgroup(sg;x.P[x])
Date html generated:
2016_11_08-AM-09_12_36
Last ObjectModification:
2016_11_03-PM-00_23_44
Theory : inner!product!spaces
Home
Index