Nuprl Lemma : mk-s-group_wf

[ss:SeparationSpace]. ∀[e:Point]. ∀[i:Point ⟶ Point]. ∀[o:{f:Point ⟶ Point ⟶ Point| 
                                                             (∀x,y,z:Point.  (f z) ≡ (f y) z)
                                                             ∧ (∀x:Point. e ≡ x)
                                                             ∧ (∀x:Point. (i x) ≡ e)} ]. ∀[sep:∀x,x',y,y':Point.
                                                                                                    (o x' y
                                                                                                     (x x'
                                                                                                       ∨ y'))].
[invsep:∀x,y:Point.  (i  y)].
  (mk-s-group(ss; e; i; o; sep; invsep) ∈ s-Group)


Proof




Definitions occuring in Statement :  mk-s-group: mk-s-group(ss; e; i; o; sep; invsep) s-group: s-Group ss-eq: x ≡ y ss-sep: y ss-point: Point separation-space: SeparationSpace uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  record: record(x.T[x]) ss-eq: x ≡ y rev_implies:  Q not: ¬A iff: ⇐⇒ Q bfalse: ff top: Top sq_type: SQType(T) uimplies: supposing a and: P ∧ Q uiff: uiff(P;Q) it: unit: Unit bool: 𝔹 record-update: r[x := v] ss-point: Point ss-sep: y s-group: s-Group mk-s-group: mk-s-group(ss; e; i; o; sep; invsep) or: P ∨ Q all: x:A. B[x] implies:  Q so_apply: x[s] so_lambda: λ2x.t[x] prop: guard: {T} btrue: tt ifthenelse: if then else fi  eq_atom: =a y subtype_rel: A ⊆B record-select: r.x record+: record+ separation-space: SeparationSpace member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  separation-space_wf ss-eq_wf set_wf ss-sep_wf ss-point_wf assert_of_bnot eqff_to_assert iff_weakening_uiff bnot_wf iff_transitivity rec_select_update_lemma subtype_base_sq assert_of_eq_atom eqtt_to_assert atom_subtype_base assert_wf bool_wf equal-wf-base uiff_transitivity eq_atom_wf or_wf not_wf all_wf subtype_rel_self
Rules used in proof :  productEquality axiomEquality equalityEquality impliesFunctionality independent_pairFormation voidEquality voidElimination isect_memberEquality dependent_functionElimination independent_isectElimination productElimination independent_functionElimination atomEquality baseClosed closedConclusion baseApply equalityElimination unionElimination lambdaFormation dependentIntersection_memberEquality rename setElimination functionExtensionality because_Cache cumulativity lambdaEquality equalitySymmetry equalityTransitivity functionEquality setEquality universeEquality isectElimination extract_by_obid instantiate tokenEquality applyEquality hypothesis thin dependentIntersectionEqElimination sqequalRule dependentIntersectionElimination sqequalHypSubstitution hypothesisEquality cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[ss:SeparationSpace].  \mforall{}[e:Point].  \mforall{}[i:Point  {}\mrightarrow{}  Point].  \mforall{}[o:\{f:Point  {}\mrightarrow{}  Point  {}\mrightarrow{}  Point| 
                                                                                                                          (\mforall{}x,y,z:Point.
                                                                                                                                f  x  (f  y  z)  \mequiv{}  f  (f  x  y)  z)
                                                                                                                          \mwedge{}  (\mforall{}x:Point.  f  x  e  \mequiv{}  x)
                                                                                                                          \mwedge{}  (\mforall{}x:Point.  f  x  (i  x)  \mequiv{}  e)\}  ].
\mforall{}[sep:\mforall{}x,x',y,y':Point.    (o  x  y  \#  o  x'  y  {}\mRightarrow{}  (x  \#  x'  \mvee{}  y  \#  y'))].  \mforall{}[invsep:\mforall{}x,y:Point.
                                                                                                                                                        (i  x  \#  i  y  {}\mRightarrow{}  x  \#  y)].
    (mk-s-group(ss;  e;  i;  o;  sep;  invsep)  \mmember{}  s-Group)



Date html generated: 2016_11_08-AM-09_11_44
Last ObjectModification: 2016_11_02-PM-05_08_13

Theory : inner!product!spaces


Home Index