Nuprl Lemma : rv-orthogonal-inverse

[rv:InnerProductSpace]. ∀[f,g:Point ⟶ Point].  (Orthogonal(f)) supposing (Orthogonal(g) and (∀x:Point. (f x) ≡ x))


Proof




Definitions occuring in Statement :  rv-orthogonal: Orthogonal(f) inner-product-space: InnerProductSpace ss-eq: x ≡ y ss-point: Point uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] apply: a function: x:A ⟶ B[x]
Definitions unfolded in proof :  rev_uimplies: rev_uimplies(P;Q) uiff: uiff(P;Q) so_apply: x[s] so_lambda: λ2x.t[x] prop: guard: {T} subtype_rel: A ⊆B false: False not: ¬A ss-eq: x ≡ y rv-orthogonal: Orthogonal(f) cand: c∧ B rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q implies:  Q all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  rv-isometry-inverse ss-eq_weakening ss-eq_functionality ss-eq_inversion rv-0_wf ss-eq_wf all_wf rv-orthogonal_wf real_wf rv-mul_wf rv-ip_wf req_witness rv-add_wf ss-point_wf separation-space_wf real-vector-space_wf inner-product-space_wf subtype_rel_transitivity inner-product-space_subtype real-vector-space_subtype1 ss-sep_wf rv-orthogonal-iff rv-orthogonal-injective
Rules used in proof :  voidElimination functionEquality equalitySymmetry equalityTransitivity isect_memberEquality functionExtensionality independent_isectElimination instantiate applyEquality lambdaEquality independent_pairEquality sqequalRule independent_pairFormation productElimination because_Cache hypothesis independent_functionElimination dependent_functionElimination hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[f,g:Point  {}\mrightarrow{}  Point].
    (Orthogonal(f))  supposing  (Orthogonal(g)  and  (\mforall{}x:Point.  g  (f  x)  \mequiv{}  x))



Date html generated: 2016_11_08-AM-09_20_32
Last ObjectModification: 2016_11_02-PM-11_43_38

Theory : inner!product!spaces


Home Index