Nuprl Lemma : subtype-orthogonal-group
∀[rv:InnerProductSpace]
  ({fg:Point ⟶ Point × (Point ⟶ Point)| let f,g = fg in (∀x:Point. f (g x) ≡ x) ∧ Orthogonal(f)}  ⊆r Point)
Proof
Definitions occuring in Statement : 
orthogonal-group: O(rv)
, 
rv-orthogonal: Orthogonal(f)
, 
inner-product-space: InnerProductSpace
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
spread: spread def, 
product: x:A × B[x]
Definitions unfolded in proof : 
guard: {T}
, 
pi1: fst(t)
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
cand: A c∧ B
, 
and: P ∧ Q
, 
btrue: tt
, 
mk-ss: mk-ss, 
bfalse: ff
, 
ifthenelse: if b then t else f fi 
, 
eq_atom: x =a y
, 
top: Top
, 
all: ∀x:A. B[x]
, 
mk-s-group: mk-s-group(ss; e; i; o; sep; invsep)
, 
set-ss: set-ss(ss;x.P[x])
, 
mk-s-subgroup: mk-s-subgroup(sg;x.P[x])
, 
ss-point: Point
, 
orthogonal-group: O(rv)
, 
subtype_rel: A ⊆r B
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
Lemmas referenced : 
separation-space_wf, 
real-vector-space_wf, 
inner-product-space_wf, 
subtype_rel_transitivity, 
inner-product-space_subtype, 
real-vector-space_subtype1, 
top_wf, 
subtype_rel_product, 
pi1_wf_top, 
rv-orthogonal_wf, 
ss-eq_wf, 
all_wf, 
ss-sep_wf, 
rv-orthogonal-injective, 
rv-orthogonal-implies-extensional, 
rv-orthogonal-inverse, 
ss-point_wf, 
rv-perm-point, 
rec_select_update_lemma
Rules used in proof : 
axiomEquality, 
instantiate, 
setEquality, 
functionEquality, 
productEquality, 
independent_functionElimination, 
independent_isectElimination, 
lambdaFormation, 
independent_pairFormation, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
independent_pairEquality, 
dependent_set_memberEquality, 
isectElimination, 
hypothesis, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
extract_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
productElimination, 
rename, 
thin, 
setElimination, 
lambdaEquality, 
cut, 
introduction, 
isect_memberFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution
Latex:
\mforall{}[rv:InnerProductSpace]
    (\{fg:Point  {}\mrightarrow{}  Point  \mtimes{}  (Point  {}\mrightarrow{}  Point)|  let  f,g  =  fg  in  (\mforall{}x:Point.  f  (g  x)  \mequiv{}  x)  \mwedge{}  Orthogonal(f)\} 
          \msubseteq{}r  Point)
Date html generated:
2016_11_08-AM-09_21_23
Last ObjectModification:
2016_11_03-PM-00_11_44
Theory : inner!product!spaces
Home
Index