Nuprl Lemma : bfs-reduce-strong-subtype
∀[K:RngSig]. ∀[S,T:Type].
  ∀[as,bs:basic-formal-sum(K;S)].  (bfs-reduce(K;T;as;bs) 
⇒ bfs-reduce(K;S;as;bs)) supposing strong-subtype(S;T)
Proof
Definitions occuring in Statement : 
bfs-reduce: bfs-reduce(K;S;as;bs)
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
strong-subtype: strong-subtype(A;B)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
bfs-reduce: bfs-reduce(K;S;as;bs)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
infix_ap: x f y
, 
subtype_rel: A ⊆r B
, 
strong-subtype: strong-subtype(A;B)
, 
cand: A c∧ B
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
sq_or: a ↓∨ b
, 
squash: ↓T
, 
bag-member: x ↓∈ bs
, 
zero-bfs: 0 * ss
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
pi2: snd(t)
, 
top: Top
, 
pi1: fst(t)
, 
formal-sum-add: x + y
, 
label: ...$L... t
, 
formal-sum-mul: k * x
Lemmas referenced : 
strong-subtype_witness, 
basic-formal-sum-strong-subtype, 
strong-subtype-implies, 
basic-formal-sum_wf, 
rng_car_wf, 
bag-append_wf, 
formal-sum-mul_wf1, 
rng_plus_wf, 
subtype_rel_self, 
bag_wf, 
zero-bfs_wf, 
bfs-reduce_wf, 
basic-formal-sum-subtype, 
strong-subtype_wf, 
istype-universe, 
rng_sig_wf, 
bag-member-append, 
bag-member_wf, 
bag-in-subtype2, 
strong-subtype-product, 
strong-subtype-self, 
bag-in-subtype, 
bag-member-map, 
rng_zero_wf, 
bag-member-strong-subtype, 
pi2_wf, 
pi1_wf_top, 
istype-void, 
formal-sum-add_wf1, 
infix_ap_wf, 
rng_times_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
rename, 
lambdaFormation_alt, 
because_Cache, 
independent_isectElimination, 
unionElimination, 
inlFormation_alt, 
productElimination, 
sqequalRule, 
productIsType, 
universeIsType, 
equalityIstype, 
productEquality, 
applyEquality, 
inrFormation_alt, 
inhabitedIsType, 
instantiate, 
universeEquality, 
promote_hyp, 
dependent_functionElimination, 
imageMemberEquality, 
baseClosed, 
hyp_replacement, 
equalitySymmetry, 
applyLambdaEquality, 
imageElimination, 
dependent_pairFormation_alt, 
independent_pairEquality, 
lambdaEquality_alt, 
independent_pairFormation, 
equalityTransitivity, 
isect_memberEquality_alt, 
voidElimination, 
spreadEquality
Latex:
\mforall{}[K:RngSig].  \mforall{}[S,T:Type].
    \mforall{}[as,bs:basic-formal-sum(K;S)].    (bfs-reduce(K;T;as;bs)  {}\mRightarrow{}  bfs-reduce(K;S;as;bs)) 
    supposing  strong-subtype(S;T)
Date html generated:
2019_10_31-AM-06_29_21
Last ObjectModification:
2019_08_15-PM-04_10_49
Theory : linear!algebra
Home
Index