Nuprl Lemma : bfs-reduce-strong-subtype

[K:RngSig]. ∀[S,T:Type].
  ∀[as,bs:basic-formal-sum(K;S)].  (bfs-reduce(K;T;as;bs)  bfs-reduce(K;S;as;bs)) supposing strong-subtype(S;T)


Proof




Definitions occuring in Statement :  bfs-reduce: bfs-reduce(K;S;as;bs) basic-formal-sum: basic-formal-sum(K;S) strong-subtype: strong-subtype(A;B) uimplies: supposing a uall: [x:A]. B[x] implies:  Q universe: Type rng_sig: RngSig
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T implies:  Q guard: {T} bfs-reduce: bfs-reduce(K;S;as;bs) or: P ∨ Q exists: x:A. B[x] and: P ∧ Q basic-formal-sum: basic-formal-sum(K;S) infix_ap: y subtype_rel: A ⊆B strong-subtype: strong-subtype(A;B) cand: c∧ B prop: all: x:A. B[x] iff: ⇐⇒ Q rev_implies:  Q sq_or: a ↓∨ b squash: T bag-member: x ↓∈ bs zero-bfs: ss uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) so_lambda: λ2x.t[x] so_apply: x[s] pi2: snd(t) top: Top pi1: fst(t) formal-sum-add: y label: ...$L... t formal-sum-mul: x
Lemmas referenced :  strong-subtype_witness basic-formal-sum-strong-subtype strong-subtype-implies basic-formal-sum_wf rng_car_wf bag-append_wf formal-sum-mul_wf1 rng_plus_wf subtype_rel_self bag_wf zero-bfs_wf bfs-reduce_wf basic-formal-sum-subtype strong-subtype_wf istype-universe rng_sig_wf bag-member-append bag-member_wf bag-in-subtype2 strong-subtype-product strong-subtype-self bag-in-subtype bag-member-map rng_zero_wf bag-member-strong-subtype pi2_wf pi1_wf_top istype-void formal-sum-add_wf1 infix_ap_wf rng_times_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis rename lambdaFormation_alt because_Cache independent_isectElimination unionElimination inlFormation_alt productElimination sqequalRule productIsType universeIsType equalityIstype productEquality applyEquality inrFormation_alt inhabitedIsType instantiate universeEquality promote_hyp dependent_functionElimination imageMemberEquality baseClosed hyp_replacement equalitySymmetry applyLambdaEquality imageElimination dependent_pairFormation_alt independent_pairEquality lambdaEquality_alt independent_pairFormation equalityTransitivity isect_memberEquality_alt voidElimination spreadEquality

Latex:
\mforall{}[K:RngSig].  \mforall{}[S,T:Type].
    \mforall{}[as,bs:basic-formal-sum(K;S)].    (bfs-reduce(K;T;as;bs)  {}\mRightarrow{}  bfs-reduce(K;S;as;bs)) 
    supposing  strong-subtype(S;T)



Date html generated: 2019_10_31-AM-06_29_21
Last ObjectModification: 2019_08_15-PM-04_10_49

Theory : linear!algebra


Home Index