Nuprl Lemma : formal-sum-subtype

[K:RngSig]. ∀[S,T:Type].  formal-sum(K;S) ⊆formal-sum(K;T) supposing S ⊆T


Proof




Definitions occuring in Statement :  formal-sum: formal-sum(K;S) uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] universe: Type rng_sig: RngSig
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a subtype_rel: A ⊆B formal-sum: formal-sum(K;S) quotient: x,y:A//B[x; y] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] all: x:A. B[x] guard: {T} implies:  Q prop: bfs-reduce: bfs-reduce(K;S;as;bs) or: P ∨ Q exists: x:A. B[x] basic-formal-sum: basic-formal-sum(K;S) so_lambda: λ2x.t[x] so_apply: x[s] infix_ap: y cand: c∧ B bfs-equiv: bfs-equiv(K;S;fs1;fs2)
Lemmas referenced :  formal-sum_wf quotient-member-eq basic-formal-sum_wf bfs-equiv_wf bfs-equiv-rel basic-formal-sum-subtype subtype_rel_wf bfs-equiv-implies bfs-reduce_wf implies-bfs-equiv subtype_rel_bag respects-equality-bag rng_car_wf respects-equality-product respects-equality-trivial subtype-respects-equality istype-base change-equality-type bag-append_wf subtype_rel_product zero-bfs_wf subtype_rel_self bag_wf formal-sum-mul_wf1 rng_plus_wf least-equiv-is-equiv-1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut lambdaEquality_alt sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin hypothesisEquality hypothesis sqequalRule pertypeElimination promote_hyp productElimination inhabitedIsType universeIsType because_Cache independent_isectElimination dependent_functionElimination equalityTransitivity equalitySymmetry applyEquality independent_functionElimination lambdaFormation_alt equalityIstype productIsType sqequalBase axiomEquality isect_memberEquality_alt isectIsTypeImplies unionElimination inlFormation_alt dependent_pairFormation_alt productEquality inrFormation_alt independent_pairFormation

Latex:
\mforall{}[K:RngSig].  \mforall{}[S,T:Type].    formal-sum(K;S)  \msubseteq{}r  formal-sum(K;T)  supposing  S  \msubseteq{}r  T



Date html generated: 2019_10_31-AM-06_28_46
Last ObjectModification: 2019_08_22-AM-10_55_01

Theory : linear!algebra


Home Index