Nuprl Lemma : formal-sum-subtype
∀[K:RngSig]. ∀[S,T:Type].  formal-sum(K;S) ⊆r formal-sum(K;T) supposing S ⊆r T
Proof
Definitions occuring in Statement : 
formal-sum: formal-sum(K;S)
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
rng_sig: RngSig
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
formal-sum: formal-sum(K;S)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
bfs-reduce: bfs-reduce(K;S;as;bs)
, 
or: P ∨ Q
, 
exists: ∃x:A. B[x]
, 
basic-formal-sum: basic-formal-sum(K;S)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
infix_ap: x f y
, 
cand: A c∧ B
, 
bfs-equiv: bfs-equiv(K;S;fs1;fs2)
Lemmas referenced : 
formal-sum_wf, 
quotient-member-eq, 
basic-formal-sum_wf, 
bfs-equiv_wf, 
bfs-equiv-rel, 
basic-formal-sum-subtype, 
subtype_rel_wf, 
bfs-equiv-implies, 
bfs-reduce_wf, 
implies-bfs-equiv, 
subtype_rel_bag, 
respects-equality-bag, 
rng_car_wf, 
respects-equality-product, 
respects-equality-trivial, 
subtype-respects-equality, 
istype-base, 
change-equality-type, 
bag-append_wf, 
subtype_rel_product, 
zero-bfs_wf, 
subtype_rel_self, 
bag_wf, 
formal-sum-mul_wf1, 
rng_plus_wf, 
least-equiv-is-equiv-1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
lambdaEquality_alt, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
promote_hyp, 
productElimination, 
inhabitedIsType, 
universeIsType, 
because_Cache, 
independent_isectElimination, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
applyEquality, 
independent_functionElimination, 
lambdaFormation_alt, 
equalityIstype, 
productIsType, 
sqequalBase, 
axiomEquality, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
unionElimination, 
inlFormation_alt, 
dependent_pairFormation_alt, 
productEquality, 
inrFormation_alt, 
independent_pairFormation
Latex:
\mforall{}[K:RngSig].  \mforall{}[S,T:Type].    formal-sum(K;S)  \msubseteq{}r  formal-sum(K;T)  supposing  S  \msubseteq{}r  T
Date html generated:
2019_10_31-AM-06_28_46
Last ObjectModification:
2019_08_22-AM-10_55_01
Theory : linear!algebra
Home
Index