Nuprl Lemma : presheaf-type-equal
∀[C:SmallCategory]. ∀[X:ps_context{j:l}(C)]. ∀[A:{X ⊢ _}]. ∀[B:A:I:cat-ob(C) ⟶ X(I) ⟶ Type × (I:cat-ob(C)
                                                                                               ⟶ J:cat-ob(C)
                                                                                               ⟶ f:(cat-arrow(C) J I)
                                                                                               ⟶ a:X(I)
                                                                                               ⟶ (A I a)
                                                                                               ⟶ (A J f(a)))].
  A = B ∈ {X ⊢ _} 
  supposing A
  = B
  ∈ (A:I:cat-ob(C) ⟶ X(I) ⟶ Type × (I:cat-ob(C)
                                     ⟶ J:cat-ob(C)
                                     ⟶ f:(cat-arrow(C) J I)
                                     ⟶ a:X(I)
                                     ⟶ (A I a)
                                     ⟶ (A J f(a))))
Proof
Definitions occuring in Statement : 
presheaf-type: {X ⊢ _}
, 
psc-restriction: f(s)
, 
I_set: A(I)
, 
ps_context: __⊢
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
cat-arrow: cat-arrow(C)
, 
cat-ob: cat-ob(C)
, 
small-category: SmallCategory
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
presheaf-type: {X ⊢ _}
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
squash: ↓T
, 
true: True
, 
prop: ℙ
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
cat-ob_wf, 
I_set_wf, 
cat-id_wf, 
subtype_rel-equal, 
psc-restriction_wf, 
equal_wf, 
psc-restriction-id, 
ps_context_cumulativity2, 
subtype_rel_self, 
iff_weakening_equal, 
cat-arrow_wf, 
cat-comp_wf, 
psc-restriction-comp, 
small-category-cumulativity-2, 
istype-universe, 
presheaf-type_wf, 
ps_context_wf, 
small-category_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
dependent_set_memberEquality_alt, 
hypothesis, 
productElimination, 
sqequalRule, 
productIsType, 
functionIsType, 
universeIsType, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
applyEquality, 
equalityIstype, 
because_Cache, 
instantiate, 
independent_isectElimination, 
lambdaEquality_alt, 
imageElimination, 
universeEquality, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
dependent_functionElimination, 
inhabitedIsType, 
isect_memberEquality_alt, 
axiomEquality, 
isectIsTypeImplies
Latex:
\mforall{}[C:SmallCategory].  \mforall{}[X:ps\_context\{j:l\}(C)].  \mforall{}[A:\{X  \mvdash{}  \_\}].
\mforall{}[B:A:I:cat-ob(C)  {}\mrightarrow{}  X(I)  {}\mrightarrow{}  Type  \mtimes{}  (I:cat-ob(C)
                                                                        {}\mrightarrow{}  J:cat-ob(C)
                                                                        {}\mrightarrow{}  f:(cat-arrow(C)  J  I)
                                                                        {}\mrightarrow{}  a:X(I)
                                                                        {}\mrightarrow{}  (A  I  a)
                                                                        {}\mrightarrow{}  (A  J  f(a)))].
    A  =  B  supposing  A  =  B
Date html generated:
2020_05_20-PM-01_25_20
Last ObjectModification:
2020_04_01-AM-11_00_46
Theory : presheaf!models!of!type!theory
Home
Index